Warunki techniczne wykonania i odbioru podkładów i podrozjazdnic strunobetonowych Id-101

Tekst jednolity uwzględniający:
1) zmiany wprowadzone uchwałą Nr 106/2020 Zarządu PKP Polskie Linie Kolejowe S.A. z dnia 11 lutego 2020 r.

Obowiązuje od dnia 18.02.2020 r.
SPIS TREŚCI

1. Przedmiot i zakres stosowania Warunków Technicznych .. 6
2. Klasyfikacja i oznaczenia ... 6
 2.1. Podkłady strunobetonowe ... 6
 2.2. Podrozjazdnice strunobetonowe .. 6
 2.3. Oznaczenia ... 6
3. Przeznaczenie i zakres stosowania .. 7
 3.1. Podkłady strunobetonowe ... 7
 3.2. Podrozjazdnice strunobetonowe .. 7
4. Wymagania i właściwości techniczne .. 7
 4.1. Wymagania ogólne .. 7
 4.2. Wymagania dotyczące materiału ... 8
 4.2.1. Cement .. 8
 4.2.2. Kruszywo ... 8
 4.2.3. Woda .. 8
 4.2.4. Stal zbrojeniowa ... 8
 4.2.5. Domieszki ... 9
 4.2.6. Elementy mocowania szyn .. 9
 4.3. Wykonanie ... 9
 4.3.1. Przygotowanie i zbrojenie form .. 9
 4.3.2. Przygotowanie, obróbka termiczna i dojrzewanie betonu 10
 4.3.3. Sprężanie podkładów i podrozjazdnic .. 11
 4.3.4. Rozformowanie ... 11
 4.3.5. Wytrzymałość betonu na ściskanie ... 11
 4.3.6. Wytrzymałość betonu na zginanie ... 11
 4.3.7. Nasiąkliwość wagowa betonu .. 11
 4.3.8. Mrozoodporność betonu .. 11
 4.4. Wymagania użytkowo-techniczne .. 12
 4.4.1. Wymiary ... 12
 4.4.2. Stan powierzchni i wygląd zewnętrzny .. 12
 4.4.3. Rezystancja elektryczna podkładu i podrozjazdnicy 14
 4.4.4. Cechowanie .. 15
5. Badania kontrolne

5.1. Rodzaje i częstotliwość prowadzenia badań

5.2. Program badań

5.2.1. Badania odbiorcze

5.2.2. Badania okresowe

5.2.3. Badania typu

5.3. Opis badań

5.3.1. Sprawdzenie materiałów

5.3.2. Sprawdzenie wytrzymałości betonu na ściskanie

5.3.3. Sprawdzenie wytrzymałości betonu na zginanie

5.3.4. Sprawdzenie nasiąkliwości betonu

5.3.5. Sprawdzenie mrozoodporności betonu

5.3.6. Sprawdzenie wymiarów i tolerancji wykonania

5.3.7. Sprawdzenie stanu powierzchni i wyglądu zewnętrznego

5.3.8. Sprawdzenie oporności elektrycznej

5.3.9. Sprawdzenie cechowania

5.3.10. Sprawdzenie wytrzymałości podkładu na zarysowanie przy obciążeniu statycznym

5.3.11. Sprawdzenie rysoodporności podkładu przy obciążeniu dynamicznym

5.3.12. Sprawdzenie wytrzymałości zmęczeniowej

6. Składanie i transport

6.1. Składanie

6.2. Transport

7. Deklaracja zgodności

8. Gwarancja

9. Informacje dodatkowe

9.1. Normy i dokumenty powołane

10. Postanowienia Przejściowe i Końcowe

Wymagania i Badania
Załączniki:
Załącznik 1: Rysunki konstrukcyjne podkładów i podrozjazdnicy
Załącznik 2: Tolerancje wykonania kontrolowanych wymiarów konstrukcyjnych
Załącznik 3: Schemat pomiaru prostoliniowości podrozjazdnicy
Załącznik 4: Schemat obciążenia próbki do określania wytrzymałości betonu na rozciąganie przy zginaniu
Załącznik 5: Schemat badania rezystancji
Załącznik 6: Schemat badania podkładu w przekroju podszyłowym
Załącznik 7: Schemat badania podkładu w przekroju środkowym
Załącznik 8: Schemat badania podrozjazdnicy
Załącznik 9: Diagram obciążeń dynamicznych
Załącznik 10: Diagram obciążeń zmęczeniowych
Załącznik 11: Podkładki stosowane przy badaniu rysoodporności
Załącznik 12: Protokół badania odbiorczego
Załącznik 13: Deklaracja zgodności
1. PRZEDMIOT I ZAKRES STOSOWANIA WARUNKÓW TECHNICZNYCH

1.1. Przedmiotem Warunków Technicznych Wykonania i Odbioru, zwanych dalej WTWiO, są podkłady i podrozjazdnice strunobetonowe, stanowiące element nawierzchni kolejowej, zatwierdzone do stosowania w torach PKP PLK S.A. i przedstawione na rysunkach stanowiących załącznik nr 1 do WTWiO.

1.2. Warunki Techniczne Wykonania i Odbioru należy stosować w zakresie produkcji, odbioru i badań podkładow i podrozjazdnic strunobetonowych przeznaczonych do torów kolejowych zarządzanych przez PKP PLK S.A.

2. KLASYFIKACJA I OZNACZENIA

2.1. Podkłady strunobetonowe
W zależności od konstrukcji i zastosowania rozróżnia się następujące typy podkładow:

2.2. Podrozjazdnice strunobetonowe
W zależności od konstrukcji rozróżnia się dwa typy podrozjazdnic: SP-93 i SP-06a. Podrozjazdnice strunobetonowe są produkowane w kompletach zwanym doborami, z przeznaczeniem do montażu na nich części stalowych rozjazdów kolejowych i skrzyżowań torów. W skład jednego doboru wchodzą podrozjazdnice o różnej długości i rozstawie dybli, przeznaczone do jednego typu rozjazu lub skrzyżowania torów wg katalogu rozjazdów. Jeden dobór stanowią np. podrozjazdnice do rozjazdu zwyczajnego z szyń 60E1 (UIC60), skosie 1:9 i promieniu 300 m – Rz UIC60-300-1:9.

2.3. Oznaczenia
Oznaczenie, usytuowane na etykiecie zbiorczej dołączanej do dostarczanej partii towaru, powinno zawierać:
- nazwę wyrobu z podaniem wersji wskazującej na przewidywane zastosowanie,
- nr Aprobaty Technicznej CNTK lub niniejszych WTWiO,
- symbole klasyfikacyjne wyrobu: PKWiU: 26.61.12-40.22
 SWW: 1435-22
 PCN: 6810 91 90 01
3. PRZEZNACZENIE I ZAKRES STOSOWANIA

3.1. Podkłady strunobetonowe

Podkłady strunobetonowe są to podpory nośne w postaci belek z betonu sprężonego, przeznaczone do torów kolejowych, służące do przekazywania obciążeń od szyn na podsypkę i utrzymujące odpowiednie położenie szyn względem siebie.

Podkłady typu PS-94 i PS-93 mogą być stosowane zamiennie w nawierzchni kolejowej wykonanej z szyn typu 60E1(UIC60) lub 49E1 (S49) bez ograniczeń; podstawowe przeznaczenie - tory klasy 0 lub 1.

Podkłady typu PS-83/K i PS-83 mogą być stosowane w nawierzchni kolejowej wykonanej z szyn typu 60E1(UIC60) lub 49E1 (S49) w torach klas 2÷5.

Podkłady typu: PS-83S, PS-94S i PS-93S mogą być stosowane w nawierzchni kolejowej wykonanej z szyn typu 60E1 (UIC60) lub 49E1 (S49) w torach o szerokości 1520 mm.

Podkłady typu PS-94M mogą być stosowane na obiektach mostowych z podsypką tam gdzie są wymagane odbojnice.

3.2. Podrozjazdnice strunobetonowe

Podrozjazdnice strunobetonowe SP-93 i SP-06a są to podpory nośne w postaci belek z betonu sprężonego, przeznaczone do rozjazdów kolejowych i skrzyżowań torów, służące do przekazywania obciążeń od szyn na podsypkę i utrzymujące odpowiednie położenie szyn i innych elementów rozjazdów bądź skrzyżowań torów względem siebie.

Podrozjazdnice typu SP-93 i SP-06a mogą być stosowane w rozjazdach z szyn typu 60E1(UIC60) lub 49E1(S49) o różnych skosach i promieniach.

4. WYMAGANIA I WŁAŚCIWOŚCI TECHNICZNE

4.1. Wymagania ogólne

Wyrób powinien być produkowany zgodnie z obowiązującą Dokumentacją Technologiczną z materiałów określonych w zestawieniu materiałowym. Producent zobowiązany jest do ciągłego nadzorowania jakości zgodnie z przyjętym systemem zapewnienia jakości wyrobu.

System zarządzania jakością produkcji u Producenta powinien umożliwiać identyfikację dostaw podstawowych materiałów wykorzystywanych do produkcji oraz identyfikację wyrobu.

Prowadzona dokumentacja powinna być czytelna i datowana oraz umożliwić jednoznaczne
odniesienie do wyrobu, którego dotyczy. Dane mogą być przechowywane w formie dokumentu, lub w postaci zapisu cyfrowego.

Nadzorowaniem należy objąć następujące dokumenty i dane (zapisy):

- atesty surowców,
- instrukcje kontroli, procedury badań, warunki techniczne odbioru wyrobów,
- dane dotyczące wyposażenia kontrolno-pomiarowego, wzorcowania,
- protokoły kontroli dostaw, badań bezpośrednich i końcowych,
- ewidencję zgłoszonych reklamacji.

4.2. Wymagania dotyczące materiału

4.2.1. Cement

- cement portlandzki klasy nie niższej niż 52,5 wg PN-EN-197-1:2002,
- zawartość związków alkalicznych mniejsza niż 0,6% masy cementu,
- zawartość SO\(_3\) nie powinna przekraczać 3,5%.

4.2.2. Kruszywo

- piasek zwykły 0-2 mm, wg PN-86/B-06712/A1:1997,
- żwir wielofrakcyjny, frakcji 0 - 16 mm, wg PN-86/B-06712/A1:1997,
- grys marki 50 ze skał magmowych lub metamorficznych, wg PN-86/B-06712/Az1:1997.

4.2.3. Woda

Właściwości i kontrola wody stosowanej do mieszanki betonowej zgodnie z PN-EN 1008:2004.

4.2.4. Stal zbrojeniowa

- drut stalowy ciągniony ∅ 7 mm o Rm ≥ 1670 N/mm\(^2\) i Rp_{0,2} ≥ 1490 N/mm\(^2\) (np. ze stali gatunku Y1670C) odpowiadający wymaganiom normy prEN-10138-2:2000\(^1\), zgodnie z Dokumentacją Techniczną,
- tarcze oporowe z prętów płaskich walcowanych 30x18 mm wg PN-EN 10058:2004(U) ze stali gatunku E295 lub E335 odpowiadającej wymaganiom normy PN-EN 10025:2002 lub gatunku C40E lub C45E odpowiadającej wymaganiom normy PN-EN...
10083-1+A1:1999, zgodnie z Dokumentacją Techniczną. Alternatywnie, dopuszcza się tarcze oporowe z ceownika (U-stal) 37x15x5 mm w gatunku stali S 700MC odpowiadającej wymaganiom normy PN-EN 10149-2:2000, zgodnie z Dokumentacją Techniczną,

- drut stalowy gładki do konstrukcji sprężonych o Rm ≥ 1860 N/mm² i Rp0,2 ≥ 1490 N/mm² (np. ze stali gatunku 2,5-II-1860 odpowiadający wymaganiom normy PN-71/M-80014, zgodnie z Dokumentacją Techniczną,

- drut stalowy nagniatany Ø 8 mm do konstrukcji sprężonych o Rm ≥ 1670 N/mm² i Rp0,2 ≥ 1470 N/mm² odpowiadający wymaganiom normy prEN-10138-2:2000), zgodnie z dokumentacją techniczną,

- pręty ze stali St3SX Ø 6 mm odpowiadające wymaganiom normy PN-82/H-93215, zgodnie z Dokumentacją Techniczną,

- pręty ze stali klasy A-II Ø 6 mm odpowiadające wymaganiom normy PN-89/H-84023/06, zgodnie z Dokumentacją Techniczną.

4.2.5. Domieszki

1) W przypadku nowej wersji projektu normy drut stalowy powinien być zgodny z najnowszą wersją projektu. W przypadku zatwierdzenia projektu normy jako normy EN drut stalowy powinien być zgodny z tą normą.

4.2.6. Elementy mocowania szyn

W zależności od przyjętego systemu mocowania szyn należy zabetonować w podkładzie lub podrozjazdnicy kotwy z żeliwa sferoidalnego zgodne z WTWiO odlewu kotwy lub dyble wykonane z tworzywa sztucznego zgodne z AT/10-2003-0061-00.

4.3. Wykonanie

4.3.1. Przygotowanie i zbrojenie form

Przygotowanie i zbrojenie form należy wykonać tak, aby spełnione były następujące warunki:

- formy oczyszczone z resztek betonu,
• powierzchnie form zabezpieczone przed przyczepnością betonu,
• rozmieszczenie zbrojenia sprężającego i poprzecznego zgodnie z Dokumentacją Techniczną; dopuszcza się odchyłki położenia zbrojenia ± 4 mm i wypadkowej zbrojenia w przeniku ± 3 mm,
• średnice drutów i ich rozmieszczenie zgodnie z Dokumentacją Techniczną i wymaganiami PN-B-03264:2002; odchylenia położenia drutów w przekroju poprzecznym nie powinny przekraczać ± 3 mm; otulenie drutów zbrojenia betonem powinno wynosić minimum 15 mm; minimalna odległość zbrojenia konstrukcyjnego lub dodatkowego od ścianki formy powinna wynosić minimum 25 mm,
• wielkość siły naciągu zbrojenia zgodna z wielkością określoną w Dokumentacji Technicznej z dopuszczalną różnicą ± 5 %; siła naciągu powinna być zapewniona poprzez zastosowanie odpowiednich urządzeń naciągowych; naciąg zbrojenia powinien być kontrolowany przy pomocy urządzenia pomiarowego i rejestrowany,
• kotwy (w przypadku podkładów) usytuowane i umocowane w formie w sposób zapewniający właściwe i niezmienne położenie zgodnie z Dokumentacją Techniczną; dopuszczalne zagłębie i wyniesienie kotwy w stosunku do górnej powierzchni podkładu wynosi +1 mm i −2 mm (wielkość tę wyznacza położenie płaszczyzny podziału górnej i dolnej części kotwy, tzw. półki, w stosunku do płaszczyzny górnej powierzchni podkładu w strefie przytwierdzenia szyny,
• dyble (w przypadku podrozjazdnic) usytuowane i umocowane w formie w sposób zapewniający właściwe i niezmienne położenie zgodnie z Dokumentacją Techniczną; dopuszczalne zagłębienie górnej powierzchni dybla poniżej górnej powierzchni podrozjazdnicy wynosi 3 mm; oś dybla powinna być prostopadła do górnej powierzchni podrozjazdnicy, z odchyłką na długości dybla nie większą niż 5 mm; otwory w dyblach powinny być drożne i zapewniać możliwość wkręcenia wkręta.

4.3.2. Przygotowanie, obróbka termiczna i dojrzewanie betonu

• minimalna zawartość cementu w betonie powinna wynosić 300 kg/m³,
• stosunek woda/cement powinien być mniejszy niż 0,45,
• maksymalna temperatura mieszanki betonowej w procesie obróbki termicznej powinna być określona w instrukcji technologicznej i nie powinna przekraczać 60 °C,
• szybkość rozgrzewania mieszanki betonowej oraz studzenia betonu w komorach nie powinna przekraczać 20 °C/h,
• w czasie obróbki termicznej i dojrzewania betonu należy zapewnić pielęgnację betonu zgodnie z instrukcją technologiczną; przebieg obróbki termicznej powinien być rejestrowany ciągle w urzędzeniu rejestrującym i stanowić dokument przy czynnościach odbiorowych (w technologii produkcji na długich torach, dopuszcza się pomiar i rejestrację co 1 godzinę).

4.3.3. Sprężanie podkładów i podrozjazdnic
Sprężanie betonu powinno się odbywać po osiągnięciu przez beton 75% wymaganej wytrzymałości na ściskanie, w sposób zgodny z instrukcją technologiczną dla stosowanej technologii produkcji. Zwolnienie naciągu i sprężanie nie powinno być wykonywane łagodnie.

4.3.4. Rozformowanie
Rozformowanie nie może powodować odkształceń i wykruszeń powierzchni podszyńcowych oraz krawędzi podkładów i podrozjazdnic większych niż podano w punktach 4.4.2.1 dla podkładów i 4.4.2.2. dla podrozjazdnic.

4.3.5. Wytrzymałość betonu na ściskanie
Wytrzymałość betonu na ściskanie po 28 dniach, powinna odpowiadać klasie C50/60.

4.3.6. Wytrzymałość betonu na zginanie
Wytrzymałość betonu na zginanie (sprawdzana tylko dla betonu przeznaczonego do produkcji podrozjazdnic) powinna wynosić minimum 5 MPa.

4.3.7. Nasiąkliwość wagowa betonu
Nasiąkliwość wagowa betonu nie powinna przekraczać 5%.

4.3.8. Mrozoodporność betonu
Stopień mrozoodporności betonu powinien odpowiadać co najmniej klasie F125.
4.4. Wymagania użytkowo-techniczne

4.4.1. Wymiary

4.4.1.1. **Podkłady strunobetonowe**
Wymiary i tolerancje wykonania podkładow powinny być zgodne z Dokumentacją Techniczną. Dopuszczalne odchyłki wymiarów podstawowych przedstawiono w załączniku 2. Ciężar podkłada powinien być zgodny z Dokumentacją Techniczną i nie powinien przekraczać ± 5% ciężaru projektowanego.

4.4.1.2. **Podrozjazdnic strunobetonowe**
Wymiary i tolerancje wykonania podrozjazdnic powinny być zgodne z Dokumentacją Techniczną. Dopuszczalne odchyłki wymiarów podstawowych przedstawiono w załączniku 2. Odległość od osi szyny skrajnej do końca podrozjazdnic powinna wynosić minimum 500 mm z wyjątkiem podrozjazdnic skróconych w których odległość powinna być zgodna z Dokumentacją Techniczną.
Dopuszczalne ugięcie w płaszczyźnie pionowej podrozjazdnic o długości powyżej 4,00 m, mierzone przy jej swobodnym podparciu, nie może wynosić więcej niż 2 mm. Dla podrozjazdnic krótszych od 3,50 m warunku tego nie sprawdza się.
Ciężar podrozjazdnic powinien być zgodny z Dokumentacją Techniczną i nie powinien przekraczać ± 5% ciężaru projektowanego.

4.4.2. Stan powierzchni i wygląd zewnętrzny

4.4.2.1. **Podkłady strunobetonowe**
Pochylenie powierzchni podszynowej, tj. na powierzchni przylegania przekładek podszywnych, mierzone pomiędzy punktami odległymi o 5 mm od wewnętrznych płaszczyzn kotew, nie może różnić się od pochylenia projektowanego więcej niż ± 1:200.
Miejscowe nierówności (wypukłości i wklęsłości) na powierzchni podszywowej (z wyjątkiem obszaru do 5 mm od powierzchni bocznej kotew), mierzone od prostej odwzorowanej za pomocą liniału krawędziowego, przyłożonego do powierzchni podszywowej podkładu – nie mogą być większe niż 1 mm.
Powierzchnie podszywowe nie mogą mieć pęknięć, rys, miejsc niedowibrowanych i raków.
Dopuszcza się:

- pory powstałe od pęcherzyków powietrza i odparowania wody zarobowej,
- miejscowe nierówności betonu (+2, -3 mm) w odległości do 5 mm od powierzchni kotew.

Powierzchnia dolna podkładu powinna być szorstka i mieć naturalną fakturę niezagładzonego betonu. Dopuszcza się występowanie nierówności do 10 mm, mierzonych od prostej odwzorowanej za pomocą liniiu krawędziowego o długości równej długości podkładu. Wszystkie krawędzie powierzchni dolnej podkładu powinny być dokładnie oczyszczone z nadlatków betonu – nadlewek i gratu.

Pozostałe powierzchnie podkładu powinny być płaskie bez pęknięć, rys i miejsc niedowibrowanych. Dopuszcza się występowanie:

- nierówności powierzchni górnej i bocznych do 3 mm, mierzonych od prostej odwzorowanej za pomocą liniiu krawędziowego o długości 1000 mm, przyłożonego do tej powierzchni,
- raków o średnicy nie większej niż 15 mm,
- wgłębień nie większych niż 5 mm,
- porów powstałych od pęcherzyków powietrza i odparowania wody zarobowej,
- wykruszeń dolnej krawędzi podkładu o szerokości do 50 mm i głębokości do 5 mm – o łącznej długości do 200 mm.

Otwory w powierzchniach czołowych po cięgnach naciągowych należy zapełnić zaprawą betonową.

4.4.2.2. **Podrozjazdnic strunobetonowe**

Powierzchnia podszywnowa podrozjazdnic powinna być płaska. Maksymalne odchylenie powierzchni podszywnowej, tj. powierzchni przylegania podkładki podszywnowej, od powierzchni podrozjazdnic powinno być mniejsze niż ± 1 mm przy wielkości gradientu 0,5 mm liczonego na długości 150 mm.

Miejscowe nierówności (wypukłości i wklęsłości) na powierzchni podszywnowej tj. na powierzchni przylegania podkładek żebrowych do górnej powierzchni podrozjazdnic
mierzone od prostej przyłożonej do powierzchni podszywowej podrozjazdniczy nie mogą być większe niż 1 mm.

Powierzchnie podszywowe nie mogą mieć pęknięć, rys, miejsc niedowibrowanych i raków. Dopuszcza się:

- pory powstałe od pęcherzyków powietrza i odparowania wody zarobowej,
- miejscowe nierówności betonu do 3 mm w odległości do 5 mm od powierzchni bocznej dybli.

Powierzchnia dolna podrozjazdnicz powinna być szorstka i mieć naturalną fakturę niezagładzonego betonu. Wszystkie krawędzie powierzchni dolnej powinny być oczyszczone z nadwleków betonu – nadlewek i gratu.

Pozostałe powierzchnie podrozjazdnic powinny być płaskie bez pęknięć, rys i miejsc niedowibrowanych. Dopuszcza się występowanie:

- nierówności +2 -3 mm,
- raków o średnicy nie większej niż 15 mm,
- wglębień nie większych niż 5 mm,
- porów powstałych od pęcherzyków powietrza i odparowania wody zarobowej,
- wykruszeń dolnej krawędzi podrozjazdnicz o szerokości do 30 mm i głębokości do 5 mm – o łącznej długości do 300 mm.

Otwory w powierzchniach czołowych po cięgnach naciągowych należy zapewnić zaprawą betonową.

4.4.2.3. **Naprawianie powierzchni podkładów i podrozjazdnic**

Naprawianie powierzchni podkładów i podrozjazdnic może być wykonywane tylko metodami dopuszczonymi do stosowania dla konstrukcji prefabrykowanych z betonu sprężonego w przypadku, gdy wymiary, nierówności lub uszkodzenia nie są większe od podwójnych wielkości wartości określonych w punktach 4.4.2.1 dla podkładów i 4.4.2.2 dla podrozjazdnic.

4.4.3. **Rezystancja elektryczna podkładu i podrozjazdnicz**

Minimalny opór elektryczny pomierzony pomiędzy dwoma szynami umocowanymi w wężle przytwierdzenia powinien wynosić 5 kΩ.
4.4.4. Cechowanie

4.4.4.1. Podkłady strunobetonowe

Każdy wyprodukowany podkład powinien być cechowany w sposób czytelny i trwały za pomocą wytłoczeń. Znaki, umieszczone na górnej powierzchni podkładu, powinny mieć wysokość nie mniejszą niż 18 mm i szerokość 5 mm oraz być wytłoczone w betonie na głębokość minimum 3 mm. Cecha powinna zawierać w przypadku podkładu:

- typ podkładu, np. PS-94,
- typ szyny, np. 60 dla szyny 60E1 (UIC60),
- rok produkcji (dwie ostatnie cyfry), np. 04,
- znak producenta: G, M, S, B lub K.

4.4.4.2. Podrozjazdnic strunobetonowe

Każda wyprodukowana podrozjazdnica powinna być cechowana w sposób czytelny i trwały za pomocą wytłoczeń. Znaki, umieszczone na górnej powierzchni podrozjazdnicy, powinny mieć wysokość nie mniejszą niż 18 mm i szerokość 5 mm oraz być wytłoczone w betonie na głębokość minimum 3 mm. Cecha powinna zawierać:

- typ rozjazdu, np. 1:9, 300,
- typ szyny, np. 60 dla szyny 60E1 (UIC60),
- rok produkcji (dwie ostatnie cyfry), np. 04,
- znak producenta: B, G, M lub S,
- numer katalogowy podrozjazdnicy, np. 327.

4.4.5. Wytrzymałość podkładu na zarysowanie przy obciążeniu statycznym

4.4.5.1. Rysoodporność części podszynowej podkładu

Podkład powinien spełniać następujące warunki:

\[Fr_r > Fr_0 \text{ dla } Fr_0 = 8Mdr \text{ [kN]} \quad (1) \]
\[Fr_{0.05} > k_{15} \times Fr_0 \quad (2) \]
\[Fr_B > k_{25} \times Fr_0 \quad (3) \]
gdzie:

Mdr – projektowy moment zginający dla strefy podszynowej podkładu [kNm],

Fr₀ – siła początkowa w cyklu obciążeń podkładu w przekroju podszynowym [kN],

Frₗ – siła powodująca powstanie pierwszej rysy w przekroju podszynowym o głębokości co najmniej 15 mm [kN],

Fr₀₀₅ – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm bez obciążenia w przekroju podszynowym [kN],

Frₗ₉₀ – siła powodująca złamanie lub stałą rozwartość rysy o szerokości 0,5 mm bez obciążenia w przekroju podszynowym [kN],

k₁ₘ – współczynnik bezpieczeństwa przy obciążeniu statycznym = 1,8,

k₂ₚ – współczynnik uderzeniowy przy obciążeniu statycznym = 2,5.

Minimalne wymagane wielkości sił obciążających w przekroju podszynowym, jakie powinien przenieść podkład przy badaniu wytrzymałości na zarysowanie przy zginaniu statycznym, przedstawiono w tabeli 1.

Tabela 1

Minimalne wymagane wartości sił obciążających w zależności od typu podkładu (wytrzymałość na zarysowanie przy obciążeniu statycznym w przekroju podszynowym)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdr [kNm]</td>
<td>15,60</td>
<td>17,88</td>
<td>20,06</td>
<td>20,15</td>
</tr>
<tr>
<td>Fr₀ [kN]</td>
<td>124,80</td>
<td>143,04</td>
<td>160,48</td>
<td>161,20</td>
</tr>
<tr>
<td>Frₗ [kN]</td>
<td>130,00</td>
<td>150,00</td>
<td>200,00</td>
<td>200,00</td>
</tr>
<tr>
<td>Fr₀₀₅ [kN]</td>
<td>230,00</td>
<td>260,00</td>
<td>300,00</td>
<td>300,00</td>
</tr>
<tr>
<td>Frₗ₉₀ [kN]</td>
<td>320,00</td>
<td>360,00</td>
<td>450,00</td>
<td>450,00</td>
</tr>
</tbody>
</table>

Wymagania i Badania
4.4.5.2 Rysoodporność części środkowej podkładu

Podkład powinien spełniać następujące warunki:

\[F_{c_m} > F_{c_{on}} \]
\[F_{c_0} = \frac{4M_{dc}}{L_c - 0,1} \quad [kN] \]
\[F_{c_{on}} = \frac{4M_{dcn}}{L_c - 0,1} \quad [kN] \]

gdzie:

- \(M_{dc} \) – projektowy moment zginający w strefie środkowej na powierzchni dolnej podkładu [kNm],
- \(M_{dcn} \) – projektowy moment zginający w strefie środkowej na powierzchni górnej podkładu [kNm],
- \(F_{c_m} \) – siła powodująca powstanie pierwszej rysy o głębokości co najmniej 15 mm w środkowej części podkładu w pozycji odwróconej [kN],
- \(F_{c_0} \) – siła początkowa w cyklu obciążeń podkładu w pozycji normalnej w przekroju środkowym [kN],
- \(F_{c_{on}} \) – siła początkowa w cyklu obciążeń podkładu w pozycji odwróconej w przekroju środkowym [kN],
- \(L_c \) – projektowana odległość pomiędzy osiami powierzchni podszydowych [m].

Minimalne wymagane wielkości sił obciągających w przekroju środkowym, jakie powinien przenieść podkład przy badaniu wytrzymałości na zarysowanie przy zginaniu statycznym, przedstawiono w tabeli 2.

Minimalne wymagane wartości sił obciągających w zależności od typu podkładu (wytrzymałość na zarysowanie przy obciążeniu statycznym w przekroju środkowym)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{dc}) [kNm]</td>
<td></td>
<td>8,99</td>
<td>10,05</td>
<td>9,76</td>
<td>9,76</td>
<td>9,76</td>
<td>9,89</td>
</tr>
<tr>
<td>(M_{dcn}) [kN]</td>
<td></td>
<td>9,65</td>
<td>10,38</td>
<td>13,51</td>
<td>13,51</td>
<td>13,33</td>
<td>13,51</td>
</tr>
<tr>
<td>(F_{c_0}) [kN]</td>
<td></td>
<td>25,54</td>
<td>26,80</td>
<td>27,61</td>
<td>26,03</td>
<td>27,61</td>
<td>26,37</td>
</tr>
<tr>
<td>(F_{c_{on}}) [kN]</td>
<td></td>
<td>27,41</td>
<td>27,80</td>
<td>38,22</td>
<td>36,03</td>
<td>37,71</td>
<td>36,03</td>
</tr>
<tr>
<td>F_c [kN]</td>
<td>30,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{cm} [kN]</td>
<td>40,00</td>
<td>30,00</td>
<td>50,00</td>
<td>45,00</td>
<td>50,00</td>
<td>45,00</td>
<td></td>
</tr>
<tr>
<td>F_B [kN]</td>
<td>65,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{Bn} [kN]</td>
<td>75,00</td>
<td>70,00</td>
<td>90,00</td>
<td>85,00</td>
<td>90,00</td>
<td>85,00</td>
<td></td>
</tr>
<tr>
<td>L_c [m]</td>
<td>1,508</td>
<td>1,600</td>
<td>1,514</td>
<td>1,600</td>
<td>1,514</td>
<td>1,600</td>
<td></td>
</tr>
</tbody>
</table>

gdzie:

F_c – siła powodująca powstanie pierwszej rysy o głębokości co najmniej 15 mm w środkowej części podkładu w pozycji normalnej [kN],

F_B – siła powodująca złamanie w środkowej części podkładu w pozycji normalnej [kN],

F_{Bn} – siła powodująca złamanie w środkowej części podkładu w pozycji odwróconej [kN].

4.4.6. Wytrzymałość podkładu na zarysowanie przy obciążeniu dynamicznym

Podkłady powinny spełniać następujące warunki:

$$F_{r_0,05}>k_{1d} \times F_{r_0}$$ (7)

$$F_B>k_{2d} \times F_{r_0} \text{ lub } F_{r_0,5}>k_{2d} \times F_{r_0}$$ (8)

gdzie:

F_{r_0} – siła początkowa w cyklu obciążeń w przekroju podszynowym [kN],

$F_{r_0,05}$ – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm bez obciążenia w przekroju podszynowym [kN],

F_B – siła powodująca złamanie podkładu w przekroju podszynowym [kN],

$F_{r_0,5}$ – siła powodująca stałą rozwartość rysy o szerokości 0,5 mm bez obciążenia w przekroju podszynowym [kN],

k_{1d} – współczynnik bezpieczeństwa przy obciążeniu dynamicznym = 1,5,

k_{2d} – współczynnik uderzeniowy przy obciążeniu dynamicznym = 2,2.

Minimalne wymagane wielkości sił obciążających przekroju podszynowym, jakie powinien przenieść podkład przy badaniu wytrzymałości na zarysowanie przy zginaniu dynamicznym, przedstawiono w tabeli 3.
WARUNKI TECHNICZNE WYKONANIA I ODBIORU
PODKŁADÓW I PODROZJAZDNIC STRUNOBETONOWYCH
WTWIO – ILK3a-5187/01/05

Tabela 3

Minimalne wymagane wartości sił obciążających w zależności od typu podkładu
(wytrzymałość na zarysowanie przy obciążeniu dynamicznym w przekroju podszynowym)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Typ podkładu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mdr</td>
<td>15,60</td>
</tr>
<tr>
<td>Fr_0</td>
<td>124,80</td>
</tr>
<tr>
<td>Fr_0,05</td>
<td>187,20</td>
</tr>
<tr>
<td>Fr_B lub Fr_0,5</td>
<td>274,60</td>
</tr>
</tbody>
</table>

4.4.7. Wytrzymałość zmęczeniowa podkładu

Podkład poddany cyklicznej sile powtarzalnej symulującej ruch taboru po torze kolejowym
i po wykonaniu 2 \times 10^6 cykli powinien spełnić następujące warunki:

- maksymalna szerokość rysy bez obciążenia może wynosić 0,05 mm,
- maksymalna szerokość rysy kiedy zadziałamy obciążeniem Fr_0 może wynieść 0,1 mm,
- Fr_B > 2,5 \times Fr_0 przy obciążaniu podkładu siłą wzrastającą od 0 do wartości Fr_B
 z prędkością maksymalną 2kN/s.

4.4.8. Wytrzymałość podrozjazdnic na zarysowanie przy obciążeniu statycznym

Podrozjazdnica powinna spełniać następujące warunki:

\[
F_{b_0,05} > k_{b_1} \times F_{b_0}
\]
\[
F_{b_{0,05}} > k_{b_{1n}} \times F_{b_{0n}}
\]
\[
F_{b_0} > k_{b_2} \times F_{b_0}
\]
\[
F_{b_n} > k_{b_{2n}} \times F_{b_{0n}}
\]
gdzie:

M – projektowy moment zginający na powierzchni dolnej podrozjazdnicy [kNm],
Mn – projektowy moment zginający na powierzchni górnej podrozjazdnicy [kNm],
Fb₀ – siła początkowa w cyklu obciążzeń podrozjazdnicy w pozycji normalnej [kN],
Fb₀n – siła początkowa w cyklu obciążeń podrozjazdnicy w pozycji odwróconej [kN],
Fbₕ – siła przy której pojawia się pierwsza rysa w dolnej części podrozjazdnicy [kN],
Fbₙₕ – siła przy której pojawia się pierwsza rysa w górnej części podrozjazdnicy [kN],
Fb₀,05 – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm bez obciążenia na powierzchni dolnej podrozjazdnicy [kN],
Fb₀,05ₙ – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm bez obciążenia na powierzchni górnej podrozjazdnicy [kN],
Fb₉ – siła powodująca złamanie podrozjazdnicy przy badaniu w pozycji normalnej [kN],
Fb₉ₙ – siła powodująca złamanie podrozjazdnicy przy badaniu w pozycji odwróconej [kN],
kᵦ₁ – współczynnik bezpieczeństwa przy badaniu podrozjazdnicy w pozycji normalnej = 1,8,
kᵦ₁ₙ – współczynnik bezpieczeństwa przy badaniu podrozjazdnicy w pozycji odwróconej = 1,8,
kᵦ₂ – współczynnik uderzeniowy przy badaniu podrozjazdnicy w pozycji normalnej = 2,5,
kᵦ₂ₙ – współczynnik uderzeniowy przy badaniu podrozjazdnicy w pozycji odwróconej = 2,5.

Minimalne wymagane wartości sił dla podrozjazdnic przedstawiono w tabelach 4a i 4b.

Tabela 4a

<table>
<thead>
<tr>
<th>Wymagane minimalne wartości sił przy obciążeniu statycznym dla podrozjazdnic w pozycji normalnej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametr/Typ podrozjazdnicy</td>
</tr>
<tr>
<td>SP-93</td>
</tr>
<tr>
<td>SP-06a</td>
</tr>
</tbody>
</table>
Wymagane minimalne wartości sił przy obciążeniu statycznym dla podrozjazdnic w pozycji odwróconej

<table>
<thead>
<tr>
<th>Parametr/Typ podrozjazdnic</th>
<th>(M_o) [kNm]</th>
<th>(F_{bn}) [kN]</th>
<th>(F_{br}) [kN]</th>
<th>(F_{br,0.05}) [kN]</th>
<th>(F_{br}) [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-93</td>
<td>20,48</td>
<td>58,51</td>
<td>80,00</td>
<td>105,30</td>
<td>146,30</td>
</tr>
<tr>
<td>SP-06a</td>
<td>29,10</td>
<td>83,14</td>
<td>90,00</td>
<td>170,00</td>
<td>200,00</td>
</tr>
</tbody>
</table>

4.4.9. **Wytrzymałość zmęczeniowa podrozjazdnic**

Podrozjazdnica poddana cyklicznej sił powtarzalnej symulującej ruch taboru po rozjeździe lub skrzyżowaniu kolejowym i po wykonaniu \(2 \times 10^6 \) cykli powinna spełniać następujące warunki:

- maksymalna szerokość rysy bez obciążenia może wynosić 0,05 mm,
- maksymalna szerokość rysy pod obciążeniem \(F_{b_0} \) może wynieść 0,1 mm,
- \(F_{br}>2,2 \times F_{b_0} \) przy obciążaniu podrozjazdnic siłą wzrastającą od 0 do wartości \(F_{br} \) z prędkością maksymalną 2kN/s.

5. **BADANIA KONTROLNE**

5.1. **Rodzaje i częstotliwość prowadzenia badań**

Badania okresowe, należy wykonywać nie rzadziej niż raz na 3 lata, jako badania kontrolne jakości produkcji oraz dla potwierdzenia ważności „Świadectwa dopuszczenia do eksploatacji typu”. Badania wykonywać powinno CNTK lub inna jednostka organizacyjna upoważniona do prowadzenia badań, w pełni sezonu produkcyjnego, to jest w okresie pomiędzy miesiącami marzec - wrzesień.

Badania typu podkładów lub podrozjazdnic strunobetonowych będą wykonywane:

- przy dopuszczeniu wyrobu do seryjnej produkcji,
- w przypadku wprowadzenia zmian w technologii produkcji,
- każdorazowo po uzyskaniu informacji o wadliwym funkcjonowaniu wyrobu.

5.2. Program badań

W przypadku podkładów partię stanowią podkłady tego samego typu i odmiany, wyprodukowane w tym samym okresie czasu z tego samego materiału i przy zachowaniu jednakowych parametrów technologicznych produkcji. Liczność partii nie może przekraczać 1200 sztuk.

W przypadku podrozjazdnic partię stanowią podrozjazdnice tego samego doboru, wyprodukowane w tym samym okresie czasu z tego samego materiału i przy zachowaniu jednakowych parametrów technologicznych produkcji.

Do poszczególnych rodzajów badań stosuje się statystyczną kontrolę jakości zgodnie z PN-83/N-03010, przyjmując: plan badania jednostopniowy, akceptowany poziom jakości 4% oraz poziom kontroli:

- ogólny 1 do sprawdzenia wymiarów powierzchni podszywnych i rozstawu kotew (dybli),
- S4 – do oględzin zewnętrznych oraz sprawdzenia pozostałych wymiarów i cechowania przy badaniach okresowych,
- S2 – do sprawdzenia pozostałych wymiarów i cechowania przy badaniach odbiorczych,
- S1 – dla badania odbiorczego rysoodporności przy obciążeniu statycznym części podszywnowej podkładu,

oraz dla badania:

- odbiorczego i okresowego rysoodporności przy obciążeniu statycznym podrozjazdnicy w pozycji normalnej i odwróconej – 4 (2+2) podrozjazdnice,
- wytrzymałości betonu na ściskanie – kontrola ciągła, 1 próbka w każdym dniu produkcji,
• wytrzymałości betonu na zginanie – kontrola ciągła, 1 próba w każdym dniu produkcji,
• okresowego wytrzymałości betonu na ściskanie – 5 próbek,
• okresowego wytrzymałości betonu na rozciąganie przy zginaniu – 3 próbki,
• mrozoodporności betonu – 12 próbek,
• nasiąkliwości betonu – 3 próbki,
• okresowego, rysoodporności przy obciążeniu statycznym w części podszywowej podkładu - 6 podkładów,
• okresowego, rysoodporności przy obciążeniu statycznym w części środkowej podkładu w pozycji odwróconej - 3 podkłady,
• typu, rysoodporności przy obciążeniu statycznym w części środkowej podkładu w pozycji odwróconej i normalnej – 6 (3+3) podkładów,
• rysoodporności przy obciążeniu dynamicznym - 6 podkładów,
• zmęczeniowego - 1 podkład lub 1 podrozjazdnica.

Do badań okresowych oraz pełnych wytrzymałościowych i zmęczeniowych pobiera się podkłady i podrozjazdnice, które po wyprodukowaniu leżakowały w warunkach atmosferycznych przez okres minimum 4 tygodni. Podkłady i podrozjazdnice pobrane do badań okresowych i pełnych powinny być moczone w wodzie przez okres 48 godzin, a następnie suszone w sposób naturalny przez okres 24 godzin.

Przy pobieraniu próbek do badań należy stosować pobieranie sposobem losowym "na ślepo", tzn. podkłady i podrozjazdnice powinny być pobierane z różnych miejsc partii.

Liczność próbki w zależności od liczności partii oraz liczby kwalifikujące Ac i dyskwalifikujące Re przy określonym akceptowanym poziomie jakości dla planu jednostopniowego i poszczególnych rodzajów kontroli przedstawiono w tabeli 5 i 6.

Tabela 5

<table>
<thead>
<tr>
<th>Liczność partii</th>
<th>Poziom kontroli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>91-150</td>
<td>B</td>
</tr>
<tr>
<td>151-280</td>
<td>B</td>
</tr>
<tr>
<td>281-500</td>
<td>B</td>
</tr>
<tr>
<td>501-1200</td>
<td>C</td>
</tr>
</tbody>
</table>
Tabela 6

Określenie liczby kwalifikującej A_c i liczby dyskwalifikującej R_e przy określonym akceptowanym poziomie jakości dla planu jednostopniowego i poszczególnych rodzajów kontroli

<table>
<thead>
<tr>
<th>Znak literowy</th>
<th>liczność próby</th>
<th>Liczba kwalifikująca A_c</th>
<th>Liczba dyskwalifikująca R_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>13</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>32</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

5.2.1. Badania odbiorcze

Zakres badań odbiorczych obejmuje sprawdzenie:

a) materiałów,
b) wymiarów i tolerancji wykonania,
c) stanu powierzchni i wyglądu zewnętrznego,
d) cechowania,
e) prostoliniowości podrozjazdnic,
f) rysoodporności części podszywowej podkładów przy obciążeniu statycznym,
g) rysoodporności podrozjazdnic przy obciążeniu statycznym.

5.2.2. Badania okresowe

Badania okresowe obejmują badania odbiorcze według 5.2.1. (a + e) oraz sprawdzenie:

a) wytrzymałości betonu na ściskanie,
b) wytrzymałości betonu na zginanie (tylko dla podrozjazdnic),
c) mrozoodporności betonu,
d) nasiąkliwości betonu,
e) rysoodporności części podszywowej podkładów przy obciążeniu statycznym,
f) rysoodporności części środkowej podkładów w pozycji odwróconej przy obciążeniu statycznym,
g) rysoodporności podrozjazdnic przy obciążeniu statycznym w pozycji normalnej i odwróconej.

5.2.3. Badania typu
Badania typu obejmują badania według 5.2.2. oraz sprawdzenie:

a) rysoodporności części podszynowej podkładów w pozycji normalnej przy obciążeniu statycznym,
b) rysoodporności podkładów przy obciążeniu dynamicznym,
c) wytrzymałości zmęczeniowej podkładu lub podrozjazdniczy,
d) oporności elektrycznej.

5.3. Opis badań

5.3.1. Sprawdzenie materiałów
1. Cement - sprawdzenie polega na skontrolowaniu atestów na cement oraz stwierdzeniu prowadzenia przez Producenta kontroli technicznej dotyczącej oznaczenia:
 - czasów wiązania - aparatem Vicata zgodnie z normą PN-EN 196-3:1996,
 - konsystencji normowej.
2. Kruszywo - sprawdzenie polega na skontrolowaniu atestów na kruszywo oraz stwierdzeniu prowadzenia przez Producenta kontroli technicznej dotyczącej oznaczenia:
 - składu ziarnowego - metodą na sucho lub mokro polegającą na rozdzieleniu kruszywa na frakcje poprzez przesianie (na sucho lub na mokro) przez zestaw sit kontrolnych o znormalizowanych wielkościach oczek kwadratowych i ustaleniu procentowego udziału masy poszczególnych frakcji w badanej próbce zgodnie z normą PN-EN 933-1:2000,
 - kształtu ziaren - metodą polegającą na określaniu procentowego udziału w kruszywie masy ziarn nieforemnych, wydzielonych z próbki w wyniku pomiarów ziarn za pomocą suwmiarki Schultza zgodnie z normą PN-EN 933-4:2001,
 - zawartości pyłów mineralnych - metodą polegającą na określaniu procentowego udziału w kruszywie masy ziarn mniejszych niż 0,063 mm w wyniku rozdzielenia ziarn
kruszywa na podstawie zróżnicowanej szybkości grawitacyjnego opadania w ośrodku ciekłym zgodnie z normą PN-78/B-06714/13,

- zawartości zanieczyszczeń obcych - metodą polegającą na makroskopowym wybraniu zanieczyszczeń obcych z próbki kruszywa, zważeniu ich i procentowym obliczeniu ich zawartości w próbnce zgodnie z normą PN-76/B-06714/12.

5.3.2. Sprawdzenie wytrzymałości betonu na ściskanie

Sprawdzenie wytrzymałości betonu na ściskanie należy przeprowadzać zgodnie z normą PN-EN 12390-3:2002, przyjmując do badań próbki sześcienne o wymiarze boku 150 mm i ustalając wytrzymałość każdej z nich z dokładnością do 0,1 MPa ze wzoru:

\[f_c = \frac{F}{A_c} \quad [\text{MPa}] \]

w którym:

- \(F \) – maksymalne obciążenie przy zniszczeniu [N],
- \(A_c \) – pole przekroju poprzecznego próbki [mm²].

5.3.3. Sprawdzenie wytrzymałości betonu na zginanie

Sprawdzenie wytrzymałości betonu na zginanie określa się zgodnie z normą PN-EN 12390-5:2001 przyjmując do badań 3 próbki w kształcie prostopadłościennej belezki o wymiarach 100x100x400 mm. Badanie należy przeprowadzać obciążając próbkę na maszynie wytrzymałościowej, zgodnie ze schematem przedstawionym w załączniku 4, ze stałą prędkością przyrostu siły 0,06 ± 0,04 N/mm²/s, ustalając wytrzymałość każdej z nich z dokładnością do 0,1 N/mm² ze wzoru:

\[f_{ct} = \frac{3 \times F \times I}{2 \times d_1 \times d_2^2} \quad [\text{MPa}] \]

w którym:

- \(F \) – maksymalne obciążenie [N],
- \(I \) – rozstaw walków podpierających [mm],
5.3.4. Sprawdzenie nasiąkliwości betonu

Nasiąkliwość betonu określa się na próbkach sześciennych o wymiarze boku 150 mm, pobranych przy stanowisku betonowania, po 28 dniach dojrzewania. Liczba próbek do jednego oznaczania nasiąkliwości nie powinna być mniejsza niż 3. Próbkę przechowuje się w warunkach takich, jak próbki do badania wytrzymałości na ściskanie i rozpoczyna badanie po 28 dniach dojrzewania.

Badanie próbek obejmuje następujące czynności:

- ułożenie próbek w naczyniu wannowym, tak aby wysokość ułożonej próbki nie przekraczała 200 mm, podstawa zaś nie stykała się z dnem naczyńia (podpórki grubości 10 mm),
- wlanie wody do naczynia do poziomu równego połowie wysokości próbek; temperatura wody 18±2°C,
- po 24 godzinach dolanie wody do poziomu o 10 mm wyższego od wysokości próbek i utrzymanie tego poziomu do końca nasycania,
- co 24 godziny próbki wyjmuje się z wody i po wytarciu powierzchni waży z dokładnością do 0,2%; nasycanie trwa tak długo, aż dwa kolejne ważenia nie wykażą przyrostu masy,
- nasycone całkowicie próbki umieszcza się w suszarce o temperaturze 105 ÷ 110 °C i suszy do stałej masy.

Obliczenie nasiąkliwości betonu, z dokładnością do 0,1%, wylicza się ze wzoru:

\[
\eta_w = \frac{G_2 - G_1}{G_1} \times 100 \% \quad (17)
\]

w którym:
- \(G_1\) - średnia masa próbek suchych [g],
- \(G_2\) - średnia masa próbek nasyconych wodą [g].
5.3.5. Sprawdzenie mrozoodporności betonu

Przyjęta metoda badania uwzględnia zarówno stopień wewnętrznej zniszczenia betonu, charakteryzowany przez wytrzymałość próbki, jak również destrukcje zewnętrzne, określone wizualnie oraz na podstawie ubytku masy. Cykle zamrażania i odmrażania polegają na kolejnym zamrażaniu całej próbki w powietrzu i odmrażaniu jej w wodzie przy okresie trwania pełnego cyklu co najmniej 6 godzin. Badanie wykonuje się na 12 próbkach w kształcie sześcianu, jak do badania wytrzymałości na ściskanie, pochodzących z jednej partii betonu, po 28 dniach dojrzewania. Próbki powinny być pobierane przy stanowisku betonowania.

Badania należy rozpocząć od nasycenia wszystkich próbek wodą jak w przypadku badania nasiąkliwości, przy czym czas nasycania nie powinien być krótszy niż 7 dni.

Sześć próbek porównawczych przeznaczonych do badania wytrzymałości powinno pozostawać w wodzie w temperaturze +18 ±2 °C przez cały czas badania odporności na działanie mrozu. Próbki przeznaczone do zamrażania należy, po otarciu z wody, zważyć z dokładnością do 0,2%. Zamrażanie powinno odbywać się w temperaturze −18 ±2 °C, przy czym temperatura w komorze zamrażalniczej powinna być już na tym poziomie w chwili układania próbek. Próbki należy ułożyć zachowując odstępy między nimi oraz ścianami komory co najmniej 20 mm. Każdorazowy okres zamrażania próbek w podanej temperaturze powinien wynosić co najmniej 4 h. Po każdym z nich próbki poddaje się odmrażaniu przez całkowite zanurzenie w wodzie o temperaturze +18 ±2 °C. Czas odmrażania powinien wynosić nie mniej niż 2 h i nie więcej niż 4 h. Badanie obejmuje 125 cykli zamrażania-odmrażania. Po ostatnim odmrażaniu, próbki po otarciu z wody waży się z dokładnością do 0,2%. Następnie przeprowadza się badanie wytrzymałości na ściskanie wg 5.3.2. próbek zamrażanych i niezamrażanych, wszystkich w stanie nasycenia wodą. Powierzchnie dociskowe próbek muszą być gładkie, a w razie ubytków – wyprawione jak do badania wytrzymałości na ściskanie.

Średni ubytek masy próbek po badaniu – ΔG należy obliczyć, wg wzoru

\[\Delta G = \frac{G_1 - G_2}{G_1} \times 100 \quad [\%] \]
(18)

w którym:

\(G_1 \) – średnia masa próbki przed ich pierwszym zamrażaniem, w stanie nasycenia wodą, [kg],

\(G_2 \) – masa próbki po zamrażaniu, [kg].
G₂ – średnia masy próbek po ich ostatnim odmrażaniu, w stanie nasycenia wodą, [kg].

Średni spadek wytrzymałości próbek po badaniu – ΔR należy obliczyć, wg wzoru

\[\Delta R = \frac{R_1 - R_2}{R_1} \times 100 \% \]

(19)

w którym

- \(R_1 \) – średnia wytrzymałość na ściskanie próbek porównawczych-niezamrażanych, nasyconych wodą, [MPa],
- \(R_2 \) – średnia wytrzymałość na ściskanie próbek badanych, po ich ostatnim odmrażaniu, nasyconych wodą, [MPa].

Stopień mrozoodporności betonu jest osiągnięty, jeżeli po wymaganej liczbie cykli zamrażania-odmrażania próbek betonowych, tzn. po 125 cyklach, spełnione są następujące warunki:

- próbki nie wykazują pęknięć,
- łączna masa ubytków betonu w postaci zniszczonych narożników i krawędzi, odprysków kruszycy itp. nie przekracza 5% masy próbek nie zamrożonych,
- obniżenie wytrzymałości na ściskanie w stosunku do wytrzymałości próbek nie zamrażanych nie jest większe niż 20%.

5.3.6. Sprawdzenie wymiarów i tolerancji wykonania

Sprawdzenia wymiarów i tolerancji wykonania podkładów i podrozjazdnic należy przeprowadzać za pomocą legalizowanych przyrządów z podziałką milimetrową z dokładnością do 1 mm oraz za pomocą suwmiarki o dokładności pomiarowej 0,1 mm. Pomiar rozstawu kotew pod jedną szyną należy przeprowadzać na wysokości 6 mm od powierzchni podkładu. Tolerancje wykonania sprawdzanych wymiarów konstrukcyjnych podkładów i podrozjazdnic przedstawiono w załączniku 2.

Sprawdzenie dopuszczalnego ugięcia podrozjazdnicy w płaszczyźnie pionowej przy jej swobodnym podparciu należy przeprowadzić zgodnie ze schematem przedstawionym w załączniku 3.
5.3.7. Sprawdzenie stanu powierzchni i wyglądu zewnętrznego

Oceny dokonuje się wzrokowo oraz za pomocą linii krawędziowego i przymiaru liniowego o dokładności pomiarowej 1,0 mm oraz suwmiarki o dokładności pomiarowej 0,1 mm.

5.3.8. Sprawdzenie oporności elektrycznej

Badanie powinno być przeprowadzone w pomieszczeniu wentylowanym o temperaturze powietrza 15-30 °C i zabezpieczonym przed przeciągiem. Należy przymocować szyny do jednego podkładu przy użyciu wszystkich elementów systemu przytwierdzenia, jak w torze. Następnie umieścić suchy podkład na dwóch izolowanych elektrycznie blokach o grubości nie mniejszej niż 50 mm, jak pokazano na rysunku w załączniku 5. Jeżeli podkład nie był wcześniej używany do tego badania, przeprowadzić proces natrysku (opisany niżej) i pozostawić do czasu wyschnięcia powierzchni - jednak na okres nie krótszy niż 24 godziny - zanim przystąpić się do badania. Ustawić przyrządy pomiarowe, jak pokazano na rysunku w załączniku 5 i przyłączyć źródło prądu. Przesuwać urządzenie natryskowe nad podkładem spryskując go wodą o wydajności 8 l/min z każdej dyszy przez 2 minuty. Rejestrować opór elektryczny podczas spryskiwania oraz przez okres nie krótszy niż 10 minut od zakończenia natrysku.

Dla każdego badania znaleźć minimalny opór R_c z wykresu oporu w czasie. Obliczyć skorygowany opór ze wzoru:

$$R_{33} = K_c R_c [\Omega]$$ (18)
gddie:
\[K_c - \text{współczynnik korekcyjny przewodnictwa użytej wody} = 0,03 \text{ C [mS/m]}, \]
\[C - \text{przewodnictwo użytej wody w [mS/m]}, \]
\[R_c - \text{opór pomierzony w [Ω]}, \]
\[R_{33} - \text{opór skorygowany dla C = 33 mS/m}. \]
Wynik badania jest średnią arytmetyczną z trzech uzyskanych wartości \(R_{33} \).

5.3.9. Sprawdzenie cechowania
Sprawdzenie polega na ocenie okiem nieuzbrojonym i suwmiarką zgodności cechowania z wymaganiami.

5.3.10. Sprawdzenie wytrzymałości na zarysowanie przy obciążeniu statycznym
Do badań należy stosować prasę o zakresie minimum 600 kN, umożliwiającą kontrolowany przyrost siły w zakresie do 10 kN/min. Do badania szerokości rys należy stosować lupy z podziałką o powiększeniu 20-krotnym lub kamery z odpowiednim oprogramowaniem pozwalającym na pomiar szerokości rys. Rysy powinny być poszukiwane po obu stronach podkładu w odległości około 15 mm od krawędzi powierzchni rozciąganej. Natężenie oświetlenia podczas prób na powierzchniach badanego podkładu powinno wynosić nie więcej niż 300 lx i nie mniej niż 74 lx.

5.3.10.1 Sprawdzenie rysoodporności podkładu

5.3.10.1.1. Sprawdzenie rysoodporności części podszywowej
Sprawdzeniu podlegają obie części podszywowe każdego z badanych podkładów. Podkład należy umieścić na stanowisku maszyny wytrzymałościowej według schematu pokazanego na rysunku 1 w załączniku 6.
Podkład należy obciążyć w sposób przedstawiony na diagramie na rysunku 2 w załączniku 6 – tzn.:
- przyłożyć i zwiększać obciążenie z prędkością maksymalną 2 kN/s od 0 do wartości \(F_{r0} \), odpowiedniej dla danego typu podkładu,
- utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund) i obserwować powierzchnię boczne podkładu w części podszywowej w poszukiwaniu rys,
jeżeli rysy się nie pojawią, należy zwiększyć obciążenie o 10 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) obserwując powierzchnie boczne podkładu,

- powtarzać cykl zwiększania obciążenia o 10 kN do momentu pojawienia się rysy,
- zanotować wartość siły F_r i odciążyć podkład z prędkością maksymalną 3 kN/s,
- powtórnie przyłożyć siłę $F_r + 10$ kN z prędkością 3 kN/s; utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund), odciążyć podkład z prędkością 3 kN/s i dokonać pomiaru rysy,
- powtarzać cykl zwiększania obciążenia o 10 kN do momentu stwierdzenia rysy o szerokości 0,05 mm bez obciążenia,
- zanotować wartość siły $F_{0,05}$ tj. siły przy której szerokość rysy wyniosła 0,05 mm,
- powtórnie przyłożyć siłę $F_{0,05} + 10$ kN z prędkością 3 kN/s; utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund), odciążyć podkład z prędkością 3 kN/s i dokonać pomiaru rysy,
- powtarzać cykl, zwiększając za każdym razem obciążenie o 10 kN aż do momentu złamania podkładu,
- zanotować wartość siły F_B, tj. siły przy której podkład ulegnie złamaniu.

W przypadku badania odbiorczego podkład należy obciążać zgodnie z diagramem przedstawionym na rysunku 3 w załączniku 6.

W przypadku badania okresowego cykl obciążania podkładu należy prowadzić do momentu pojawienia się pierwszej rysy tzn. do określenia wielkości siły F_r - rysunek 2 załącznik 6.

W przypadku badania typu cykl obciążania podkładu należy prowadzić zgodnie z diagramem przedstawionym na rysunku 2 w załączniku 6.

5.3.10.1.2. Sprawdzenie rysoodporności części środkowej

Podkład należy umieścić na stanowisku maszyny wytrzymałościowej wg schematu pokazanego na rysunku 1 i 2 w załączniku 7.

Podkład należy obciążyć w sposób przedstawiony na diagramie na rysunku 3 w załączniku 7 – tzn.:
• przyłożyć i zwiększać siłę z prędkością maksymalną 2 kN/s od 0 do wartości Fc₀ (Fc₀n), odpowiedniej dla danego typu podkładu,
• utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund) i obserwować powierzchnie boczne podkładu w części środkowej w poszukiwaniu rys,
• jeżeli rysy się nie pojawią, należy zwiększyć obciążenie o 5 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) obserwując powierzchnie boczne podkładu,
• powtarzać cykl zwiększania obciążenia o 5 kN do momentu stwierdzenia pojawienia się rysy,
• zanotować wartość siły Fcᵣ (Fcᵣn),
• zwiększyć obciążenie o 5 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) obserwując powierzchnie boczne podkładu,
• powtarzać cykl, zwiększając za każdym razem obciążenie o 5 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) aż do momentu złamania podkładu lub kiedy nie można osiągnąć przyrostu obciążenia,
• zanotować wartość siły Fc₉ (Fc₉n), tj. siły przy której podkład ulegnie złamaniu lub kiedy nie można osiągnąć przyrostu obciążenia.

W przypadku badania okresowego podkład należy obciązać w pozycji odwróconej.
W przypadku badania typu podkład należy obciązać w pozycji odwróconej i w pozycji normalnej.

5.3.10.2 Sprawdzenie rysoodporności podrozjazdnicy
Podrozjazdnicę należy umieścić na stanowisku maszyny wytrzymałościowej wg schematu pokazanego na rysunku 1 w załączniku 8.
Podrozjazdnicę należy obciązać w sposób przedstawiony na diagramie na rys. 2 w załączniku 8 – tzn.:
• przyłożyć i zwiększać siłę z prędkością maksymalną 2 kN/s od 0 do wartości Fb₀ (Fb₀n),
• utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund) i obserwować powierzchnie boczne podrozjazdnicy w części środkowej w poszukiwaniu rys,
• jeżeli rysy się nie pojawią, należy zwiększyć obciążenie o 5 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) obserwując powierzchnie boczne podrozjazdnic,
• powtarzać cykl zwiększania obciążenia o 5 kN do momentu stwierdzenia pojawiensia się rysy,
• zanotować wartość siły Fb (Fb_m) i odciążyć podrozjazdnicę z prędkością 3 kN/s,
• ponownie przyłożyć siłę Fb (Fb_m) + 5 kN z prędkością 3 kN/s, utrzymać obciążenie przez minimum 10 sekund (maksymalnie 300 sekund), odciążyć podkład z prędkością 3 kN/s i dokonać pomiaru rysy,
• powtarzać cykl zwiększania obciążenia o 5 kN do momentu stwierdzenia rysy o szerokości 0,05 mm bez obciążenia,
• zanotować wartość siły Fb_0,05 (Fb_0,05n) tj. siły przy której szerokość rysy wynosi 0,05 mm i odciążyć podkład z prędkością 3 kN/s,
• powtarzać cykl, zwiększając za każdym razem obciążenie o 5 kN i utrzymać je przez minimum 10 sekund (maksymalnie 300 sekund) aż do momentu złamania podrozjazdnic lub osiągnięcia przez rysę szerokości 0,5 mm bez obciążenia,
• zanotować wartość siły Fb_B (Fb_Bn), tj. siły przy której podrozjazdnica ulegnie złamaniu lub szerokość rysy wyniesie 0,5 mm bez obciążenia.

W przypadku badania odbiorczego podrozjazdnicę należy obciążyć zgodnie z diagramem przedstawionym na rysunku 3 w załączniku 8.
W przypadku badania okresowego cykl obciążania podrozjazdnic należy prowadzić do momentu pojawienia się pierwszej rysy tzn. do określenia wartości sił Fb i Fb_m - rysunek 2 załącznik 8.
W przypadku badania typu badanie podrozjazdnic przeprowadzane jest zgodnie z diagramem przedstawionym na rysunku 2 w załączniku 8.

5.3.11. Sprawdzenie rysoodporności podkładu przy obciążeniu dynamicznym
Podkład należy umieścić na stanowisku maszyny wytrzymałościowej wg schematu pokazanego na rysunku 1 w załączniku 6 i obciążyć z częstotliwością 2-5 Hz w sposób przedstawiony na diagramie na rysunku w załączniku 9 – tzn.:
Wymagania i Badania

- przeprowadzić 5000 cykli obciążenia zmiennego o zakresie od \(F_{ru} = 50 \text{ kN} \) do \(F_{r_0} \) obserwując powierzchnie boczne podkładu w części podszynowej w poszukiwaniu rys,
- jeżeli rysy widoczne okiem nieuzbrojonym nie pojawią się, należy odciążyć podkład, a następnie przeprowadzić kolejne 5000 cykli obciążenia zmiennego ze zwiększoną górną granicą obciążenia o 20 kN (zakres obciążenia od \(F_{ru} = 50 \text{ kN} \) do \(F_{r_0} + 20 \text{ kN} \)) obserwując powierzchnie boczne podkładu w części podszynowej w poszukiwaniu rys,
- powtarzać cykle obciążenia ze zwiększaniem górnej granicy obciążenia o 20 kN do momentu stwierdzenia rysy widocznej okiem nieuzbrojonym pod obciążeniem,
- zanotować wartość siły \(F_{r} \) tj. siły przy której pojawi się pierwsza rysa widoczna okiem nieuzbrojonym,
- przeprowadzić kolejne 5000 cykli obciążenia zmiennego ze zwiększoną górną granicą obciążenia o 20 kN (zakres obciążenia od \(F_{ru} \) do \(F_{r} + 20 \text{ kN} \)), odciążyć podkład i dokonać pomiaru rysy,
- powtarzać cykle obciążenia ze zwiększaniem górnej granicy obciążenia o 20 kN do momentu osiągnięcia przez rysę szerokości 0,05 mm bez obciążenia,
- zanotować wartość siły \(F_{r_{0,05}} \) tj. siły przy której szerokość rysy wynosi 0,05 mm bez obciążenia;
- przeprowadzić kolejne 5000 cykli obciążenia zmiennego ze zwiększoną górną granicą obciążenia o 20 kN (zakres obciążenia od \(F_{ru} \) do \(F_{r_{0,05}} + 20 \text{ kN} \)), odciążyć podkład i dokonać pomiaru rysy,
- powtarzać cykle obciążenia ze zwiększaniem górnej granicy obciążenia o 20 kN do momentu osiągnięcia przez rysę szerokości 0,5 mm bez obciążenia lub złamania podkładu,
- zanotować wartość siły \(F_{r_{0,5}} \), tj. siły przy której podkład ulegnie złamaniu lub szerokość rysy wyniesie 0,5 mm bez obciążenia.
5.3.12. Sprawdzenie wytrzymałości zmęczeniowej

5.3.12.1 Podkład

Podkład należy umieścić na stanowisku maszyny wytrzymałościowej wg schematu pokazanego na rysunku 1 w załączniku 6 i obciążyć z częstotliwością 2-5 Hz w sposób przedstawiony na diagramie na rysunku 1 w załączniku 10 – tzn.:

- przeprowadzić 2x10^6 cykli obciążenia zmiennego o zakresie od Fr_u = 50 kN do Fr_0, przy czym pierwsze obciążenie powinno osiągnąć wartość Fr_r,
- po przeprowadzonym cyklu obciążenia zmiennego należy odciążyć podkład i sprawdzić czy nie pojawiły się rysy o szerokości \(\leq 0,05 \text{ mm} \),
- następnie przyłożyć i zwiększać obciążenie z prędkością 2 kN/s od 0 do wartości Fr_0 i sprawdzić czy nie pojawiły się rysy większe niż 0,1 mm,
- kontynuować obciążenie z prędkością 2 kN/s do osiągnięcia wartości równej Fr_B,
- zanotować wartość siły Fr_B tj. siły przy której podkład ulegnie złamaniu lub kiedy nie można osiągnąć przyrostu obciążenia.

5.3.12.2 Podrozjazdnica

Podrozjazdnicę należy umieścić na stanowisku maszyny wytrzymałościowej wg schematu pokazanego na rysunku 1 w załączniku 8 i obciążyć z częstotliwością 2-5 Hz w sposób przedstawiony na diagramie na rysunku 2 w załączniku 10 – tzn.:

- przeprowadzić 2x10^6 cykli obciążenia zmiennego o zakresie od Fb_u = 21 kN do Fb_0, przy czym pierwsze obciążenie powinno osiągnąć wartość Fb_r;
- po przeprowadzonym cyklu obciążenia zmiennego należy odciążyć podrozjazdnicę i sprawdzić czy nie pojawiły się rysy o szerokości \(\leq 0,05 \text{ mm} \),
- następnie przyłożyć i zwiększając obciążenie z prędkością 2 kN/s od 0 do wartości Fb_0 i sprawdzić czy nie pojawiły się rysy większe niż 0,1 mm,
- kontynuować obciążenie z prędkością 2 kN/s do osiągnięcia wartości równej Fb_B
- zanotować wartość siły Fb_B tj. siły przy której podrozjazdnica ulegnie złamaniu lub kiedy nie można osiągnąć przyrostu obciążenia.
6. SKŁADOWANIE I TRANSPORT

6.1. Składowanie
Składowanie podkładów i podrozjazdnic powinno odbywać się na wyrównanym, utwardzonym i odwodnionym podłożu maksymalnie do 15 warstw podkładów i 10 warstw podrozjazdnic, na przekładkach drewnianych, z zachowaniem odstępów umożliwiających załadunek sprzętem mechanicznym. Przekładki powinny być ułożone w kierunku poprzecznym w części podszywowej podkładów i podrozjazdnic.

6.2. Transport
Podkłady i podrozjazdnic mogą być przewożone dowolnymi środkami transportu w liczbie sztuk nie przekraczającej dopuszczalnego obciążenia zastosowanego środka transportu. Rozmieszczenie podkładów i podrozjazdnic na środkach transportu powinno zabezpieczać je przed uszkodzeniem i zapewnić równomierne obciążenie środków transportu. Podkłady i podrozjazdnic należy układać z odstępami umożliwiającymi załadunek i rozładunek za pomocą sprzętu mechanicznego.

7. DEKLARACJA ZGODNOŚCI

Dostawca jest zobowiązany do wystawienia dla każdej partii wyrobu deklaracji, stwierdzającej zgodność wyrobu z wymienionymi w deklaracji dokumentami odniesienia. Zgodnie z normą PN-EN 45014:2000, deklaracja powinna zawierać wystarczające informacje, umożliwiające odbiorcy zidentyfikowanie dostawcy, który złożył deklarację oraz umożliwiające identyfikację osoby, która deklarację podpisała. Deklaracja powinna zawierać co najmniej następujące informacje:

- nazwę i adres dostawcy składającego deklarację,
- identyfikację wyrobu przez podanie:
 - nazwy wyrobu,
 - symboli kwalifikacji wyrobu,
 - przeznaczenia i zakresu stosowania wyrobu,
 - określenie partii wyrobu, objętej deklaracją,
- oświadczenie zgodności wyrobu z dokumentami odniesienia,
• wykaz dokumentów odniesienia, takich jak np.:
 – Warunki Techniczne Wykonania i Odbioru,
 – Aprobata Techniczna,
 – Świadectwo dopuszczenia do eksploatacji typu.
Dokumenty powinny mieć podane numery, tytuły i daty wydania.
• miejsce i data wystawienia deklaracji,
• podpisy, pieczęcie, imiona i nazwiska osób uprawnionych do wystawienia deklaracji
 w imieniu dostawcy. Liczbę złożonych podpisów wyznacza forma prawna organizacji
 dostawcy.
W celu umożliwienia odniesienia deklaracji do wyników oceny zgodności, na podstawie
których deklaracja została złożona, mogą być podane dodatkowe informacje, na przykład:
• nazwa i adres zaangażowanego laboratorium badawczego lub jednostki certyfikującej,
• powołanie się na certyfikowany system zarządzania,
• powołanie się na dokument akredytacji laboratorium.
Przykład „Deklaracji zgodności” zawiera załącznik 13.

8. GWARANCJA

Producent powinien udzielić gwarancji na dostarczony produkt poczynając od daty produkcji
oznaczonej na podkładzie lub podrozjazdnicy, chyba że w wyniku działań przetargowych
w warunkach zamówienia zasady udzielenia gwarancji zostaną określone inaczej.
Jednocześnie należy zaznaczyć, że w obu przypadkach okres gwarancji nie może być
krót szy niż 5 lat. Producent ponosi odpowiedzialność z tytułu gwarancji wtedy, gdy odbiorca
spełni warunki dotyczące składowania i transportu wyrobów zgodnie z niniejszymi WTWiO
oraz dokona wbudowania w tor i użytkowania zgodnie z obowiązującymi warunkami
technicznymi i instrukcjami dotyczącymi budowy, montażu i utrzymania nawierzchni
obowiązującymi na PKP Polskie Linie Kolejowe S.A.. Termin upływu gwarancji podaje
producent w umowie lub potwierdzeniu dostawy.

9. INFORMACJE DODATKOWE

Niniejsze Warunki Techniczne Wykonania i Odbioru podkładów i podrozjazdnic
strunobetonowych uwzględniają zapisy norm: PN-EN 13230-1:2003(U), PN-EN 13230-
2:2003(U), PN-EN 13230-4:2003(U) w zakresie wymagań i badań jakie są stawiane monoblokowym podkładom strunobetonowym oraz podrozjazdnicom strunobetonowym przeznaczonym do rozjazdów i skrzyżowań torów.

9.1. Normy i dokumenty powołane:

<table>
<thead>
<tr>
<th>Nr normy</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN-71/M-80014</td>
<td>Druty stalowe gładkie do konstrukcji sprężonych</td>
</tr>
<tr>
<td>PN-76/B-06714/12</td>
<td>Kruszywa mineralne. Badania. Oznaczanie zawartości zanieczyszczeń obcych</td>
</tr>
<tr>
<td>PN-78/B-06714/13</td>
<td>Kruszywa mineralne. Badania. Oznaczanie zawartości pylów mineralnych</td>
</tr>
<tr>
<td>PN-82/H-93215</td>
<td>Walcówka i pręty stalowe do zbrojenia betonu</td>
</tr>
<tr>
<td>PN-83/N-03010</td>
<td>Statystyczna kontrola jakości. Losowy wybór jednostek produktu do próbki</td>
</tr>
<tr>
<td>PN-86/B-06712/A1: 1997</td>
<td>Kruszywa mineralne do betonu</td>
</tr>
<tr>
<td>PN-EN 196-3:1996</td>
<td>Metody badania cementu. Oznaczanie czasów wiązania i stałości objętości</td>
</tr>
<tr>
<td>prEN-10138-2:2000</td>
<td>Prestressing steels – Part 2: Wire</td>
</tr>
<tr>
<td>PN-ISO 2859-1:2003</td>
<td>Procedury kontroli wyrywkowej metodą alternatywną. Część 1: Schematy kontroli indeksowane na podstawie granicy akceptowanej jakości (AQL) stosowane do kontroli partii za partią</td>
</tr>
<tr>
<td>PN-H-84023-06:1989</td>
<td>Stal określenego zastosowania - Stal do zbrojenia betonu – Gatunki</td>
</tr>
<tr>
<td>PN-EN 10149-2:2000</td>
<td>Wyroby płaskie walcowane na gorąco ze stali o podwyższonej granicy plastyczności do obróbki plastycznej na zimno – Warunki dostawy wyrobów walcowanych termomechanicznie</td>
</tr>
<tr>
<td>PN-EN 45014:2000</td>
<td>Ogólne kryteria deklaracji zgodności składanej przez dostawcę</td>
</tr>
<tr>
<td>PN-EN-197-1:2002</td>
<td>Cement. Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>PN-B-03264:2002</td>
<td>Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie</td>
</tr>
<tr>
<td>PN-EN 10025:2002</td>
<td>Wyroby walcowane na gorąco z niestopowych stali konstrukcyjnych. Warunki techniczne dostawy</td>
</tr>
<tr>
<td>PN-EN 13230-2:2003(U)</td>
<td>Kolejnictwo. Tor. Podkłady i podrozjazdnice betonowe Część 2: Podkłady monoblokowe z betonu sprężone</td>
</tr>
<tr>
<td>PN-EN 206-1:2003</td>
<td>Beton. Część 1: Wymagania, właściwości, produkcja i zgodność</td>
</tr>
<tr>
<td>PN-EN 10058:2004(U)</td>
<td>Płaskowniki stalowe walcowane na gorąco ogólnego zastosowania. Wymiary i tolerancje kształtu i wymiarów</td>
</tr>
<tr>
<td>PN-EN 1008:2004</td>
<td>Woda zarobowa do betonu. Specyfikacja pobierania próbek, badania i ocena przydatności wody zarobowej do betonu w tym wody odzyskanej z procesów produkcji betonu</td>
</tr>
<tr>
<td>AT/10-2003-0061-00</td>
<td>Dybel śrubowy typu B i C</td>
</tr>
<tr>
<td>CILK2-518-3/1/99/JW.</td>
<td>Warunki Techniczne Wykonania i Odbioru odlewu kotwy SB 3/3</td>
</tr>
</tbody>
</table>
10. POSTANOWIENIA PRZEJŚCIOWE I KOŃCOWE

1. Przy realizacji zadań inwestycyjnych, dla których dokumentację projektową zapewnił Zamawiający (tryb „Buduj”), należy stosować przedmiotowe Warunki Techniczne w brzmieniu obowiązującym i zastosowanym przy przygotowaniu przedmiotowej dokumentacji.

2. W przypadkach innych niż wymienione w ust. 1, jeżeli zmiany do niniejszych Warunków Technicznych weszły w życie przed datą odniesienia tj. datą o 28 dni wcześniejszą od najpóźniejszej daty na przedłożenie dokumentów ofertowych w ramach prowadzonego przez Spółkę postępowania przetargowego, lub zostały przewidziane w materiałach przetargowych, stosuje się postanowienia Warunków Technicznych z uwzględnieniem wprowadzonych zmian.

3. W przypadkach innych niż wymienione w ust. 1, jeżeli zmiany do niniejszych Warunków Technicznych weszły w życie po dacie odniesienia, o której mowa w ust. 2, i nie zostały przewidziane w materiałach przetargowych, mogą być stosowane przy realizacji projektu. Decyzję odnośnie ich zastosowania podejmują łącznie członek Zarządu nadzorujący jednostkę organizacyjną/komórkę organizacyjną Centrali właściwą dla danego projektu inwestycyjnego wraz z członkiem Zarządu nadzorującym jednostkę organizacyjną/komórkę organizacyjną Centrali odpowiedzialną za opracowanie Warunków Technicznych, przy uwzględnieniu:
 1) stanowiska przedstawionego przez Wykonawcę informującego o skutkach zmian w zakresie czasu i kosztów realizacji projektu,
 2) opinii wydawcy instrukcji odnoszącej się do stanowiska Wykonawcy,
 3) rekomendacji jednostki organizacyjnej/komórki organizacyjnej Centrali właściwej dla danego projektu inwestycyjnego.
Podkład strunobetonowy PS-83/K

Załącznik 1

Podkład strunobetonowy PS-83/K

miejsc z oznaczeniem producenta i roku produkcji

miska całkowita podkładu: 237 kg

powierzchnia podparcia: 6943 cm²

masa całkowita podkładu: 237 kg

Wymagania i Badania
Podkład strunobetonowy PS-83

Wymagania i Badania
Podkład strunobetonowy PS-93

Wymagania i Badania

Typ szyny	a	b	c	Wymiar nominalny
60E1 (UIC60) | 170.5 | 1685.4 | 1514.9 | 1508.6
48E1 (U49) | 145.5 | 1541.4 | 1508.6

Wymiar nominalny

- a: 400 ± 10.0
- b: 2600 ± 10.0
- c: 500

Masa całkowita podkładu: 320 kg

Powyższa ilustracja przedstawia podkład strunobetonowy PS-93 z podanymi wymiarami i parametrami technicznymi.
Podkład strunobetonowy PS-94

Podkład strunobetonowy PS-94

<table>
<thead>
<tr>
<th>Typ szyny</th>
<th>150.8</th>
<th>1654.1</th>
<th>145.5</th>
<th>1685.4</th>
<th>1508.6</th>
<th>170.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyprowadzenie zbrojenia</td>
<td>216 300</td>
<td>212 117</td>
<td>210 160</td>
<td>228.9 179.3</td>
<td>222.5 180</td>
<td>235 138</td>
</tr>
<tr>
<td>a</td>
<td>2600 ±10.0</td>
<td>60E1 (UIC60)</td>
<td>150.8</td>
<td>220.1</td>
<td>141</td>
<td>204.4</td>
</tr>
<tr>
<td>b</td>
<td>275.7</td>
<td>300</td>
<td>150</td>
<td>246.3</td>
<td>220</td>
<td>212</td>
</tr>
<tr>
<td>c</td>
<td>150</td>
<td>210</td>
<td>217.1</td>
<td>228.9</td>
<td>179.3</td>
<td>143</td>
</tr>
</tbody>
</table>

Wymiar nominalny

1:40±1:200

A-A

B-B

Typ szyny

60E5 (UIC60)

150.8

216

300

150

246.3

220

212

117

210

228.9

179.3

143

43

235

222.5

180

138

300

216

300

138

210

217.1

Wymiary i Badania

Strona 45

Oryginał

Nr kopii......

Wymagania i Badania

Strona 77
Podkład strunobetonowy PS-83S

Typ szyny |
| Typ szyny |
a	b	c	
60E1 (UC60)	170,5	1770,4	1599,9
48E1 (S48)	145,5	1793,1	1593,6

Wymiary nominalne:

- Wymiary: a, b, c
- Typ szyny: 60E1 (UC60), 48E1 (S48)

Masa całkowita podkładu: 285 kg
Powierzchnia podparcia: 719 cm²

Wymagania i Badania
Strona 77
Podkład strunobetonowy PS-93S

<table>
<thead>
<tr>
<th>Wymiar nominalny</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ szyny</td>
<td>60E1 (UIC60)</td>
<td>170.5</td>
<td>1599.9</td>
</tr>
<tr>
<td></td>
<td>49E1 (E449)</td>
<td>145.5</td>
<td>1593.6</td>
</tr>
</tbody>
</table>

Waga całkowita podkładu: 320 kg
Powierzchnia podparcia: 6805 cm²
Podkład strunobetonowy PS-94S

Wymiary i Badania

<table>
<thead>
<tr>
<th>Typ szyny</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>66E1 (UIC80)</td>
<td>170.5</td>
<td>159.8</td>
<td>17.04</td>
<td>17.04</td>
</tr>
<tr>
<td>49E1 (S49)</td>
<td>169.9</td>
<td>159.8</td>
<td>17.04</td>
<td>17.04</td>
</tr>
</tbody>
</table>

Wymiar nominalny

<table>
<thead>
<tr>
<th>Typ szyny</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>66E1 (UIC80)</td>
<td>170.5</td>
<td>159.8</td>
<td>17.04</td>
<td>17.04</td>
</tr>
<tr>
<td>49E1 (S49)</td>
<td>169.9</td>
<td>159.8</td>
<td>17.04</td>
<td>17.04</td>
</tr>
</tbody>
</table>

Masa całkowita podkładu: 325 kg

powierzchnia podparcia: 6805 cm²

masa całkowita podkładu: 325 kg
Podkład strunobetonowy PS-94M

Wymiary nominalne:
- Typ szyny: 60E1 (UIC60)
- Wymiar B-B: 150
- Wymiar A-A: 246.3
- Masa całkowita podkładu: 335 kg
- Powierzchnia podparcia: 6805 cm²

Wymiary konstrukcyjne:
- Wypałkowa zbrojenia a, b, c, d, e, f, g, h, i
- Wymiary b, c, d, e, f, g, h, i
- Masa całkowita podkładu: 6805 cm²

Strona 49
Oryginal
Nr kopii......

Wymagania i Badania
Strona 77
Podrozjazdnica strunobetonowa SP-93 - 327

masa podrozjaznicy: 152 kg/m

powierzchnia podparcia: 2900 cm²/mb

wypadkowa zbrojenia

Wymagania i Badania

Stron 77
Podrozjazdnica strunobetonowa SP-06a – 327
Tolerancje wykonania kontrolowanych wymiarów konstrukcyjnych

Podkład strunobetonowy

1 – cecha podkładu: PS-83, PS-83S - typ szyny, typ podkładu
2 – cecha podkładu: PS-83, PS-83S - nr formy; znak producenta; rok produkcji;
 PS-93, PS-93S, PS-94, PS-94S, PS-94M - typ szyny, rok produkcji, znak producenta, typ podkładu, nr formy

Dopuszczalne odchyłki wymiarów podstawowych nie powinny przekraczać dla:

- całkowitej długości podkładu – L ± 10 mm,
- odległości między skrajnymi kotwami – L_1 +2 – 1 mm,
- odległości między skrajną kotwą a końcem podkładu – L_2 ± 8 mm,
- odległości między kotwami pod jedną szyną – L_3 +2,5 + 0,5 mm,
- szerokości u góry i na dole części podszywowej podkładu – b_1, b_2 +5 – 3 mm,
- szerokości u góry i na dole w części środkowej podkładu – c_1, c_2 +5 – 3 mm,
- wysokości podkładu pod szyną – h_p +5 – 3 mm,
- wysokości podkładu w części środkowej – h +5 – 3 mm.
Sprawdzian rozstawu kotew pod jedną szyną

1 - Znakować - górny wymiar graniczny
2 - Znakować - dolny wymiar graniczny

<table>
<thead>
<tr>
<th>Typ sprawdzianu</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>60E1 (UIC60)</td>
<td>170.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>173.05</td>
<td></td>
</tr>
<tr>
<td>49E1 (S49)</td>
<td>145.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>148.05</td>
<td></td>
</tr>
</tbody>
</table>
Sprawdzian rozstawu kotew skrajnych

1 - Znakować - górny wymiar graniczny
2 - Znakować - dolny wymiar graniczny

<table>
<thead>
<tr>
<th>Typ sprawdzianu</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0E (UIC60) 1/8</td>
<td>1684.6</td>
<td>1687.4</td>
</tr>
<tr>
<td>49E (S49) 1/8</td>
<td>1653.3</td>
<td>1656.1</td>
</tr>
<tr>
<td>S0E (UIC60) 1/4</td>
<td>1769.6</td>
<td>1772.4</td>
</tr>
<tr>
<td>49E (S49) 1/4</td>
<td>1738.3</td>
<td>1741.1</td>
</tr>
</tbody>
</table>
Podrozjazdnica strunobetonowa

1 – cecha producenta, rok produkcji;
2 – typ szyn, typ rozjazdu (promień i skos)
3 – numer podrozjazdnicy

Dopuszczalne odchyłki wymiarów podstawowych nie powinny przekraczać dla:

- długości – L \(\pm 10 \text{ mm} \),
- szerokości – \(b_1, b_2 \) \(+5 – 3 \text{ mm}\),
- wysokości – \(h \) \(+5 – 3 \text{ mm}\).

Tolerancje rozmieszczenia dybli

A i D = \(\pm 1,0 \text{ mm} \); B i C = \(\pm 1,5 \text{ mm} \); E = \(\pm 10 \text{ mm} \)
Schemat pomiaru prostoliniowości podrozjazdnicy

1 – sztywne podłoże
2 – badana podrozjazdnica
3 – podpora poprzeczna 50 x 50 mm
4 – prosta odniesienia (laser, drut itp.)
5 – podpora poprzeczna
6 – powierzchnia podrozjazdnicy
7 – punkt pomiaru strzałki ugięcia

\[L \approx 4,00 \text{ m} \]
Schemat obciążenia próbki do określania wytrzymałości betonu
na rozciąganie przy zginaniu
 Załącznik 5

Schemat badania rezystancji

1 rama natryskowa
2 dysze natryskowe
3 podkład
4 podłoże izolowane elektrycznie

Obwód pomiarowy do badania rezystancji

A zapis
V
Schemat badania podkładu w przekroju podszynowym

1 – sztywne podłoże; 4 – podkład;
2 – podpora; 5 – standardowa przekładka podszynowa;
3 – sprężysta podkładka (załącznik 11); 6 – stalowa podkładka klinowa (załącznik 11);
7 – kotwy

Rysunek 1

Szczegół A

1 – powierzchnia posmarowana
Materiał: stal o twardości minimum 240 HB; tolerancja wykonania ± 0,1 mm

Minimalna długość podpory powinna wynosić - szerokość podkładu w strefie podszynowej + 20 mm

Diagram obciążenia statycznych strefy podszynowej podkładu

Rysunek 2

- F_{r_0} – siła początkowa w cyklu obciążenia w przekroju podszywowym, [kN]
- F_r – siła powodująca powstanie pierwszej rysy w przekroju podszywowym o minimalnej głębokości 15 mm, [kN]
- $F_{r_{0,05}}$ – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm bez obciążenia w przekroju podszywowym, [kN]
- F_B – siła powodująca złamanie w przekroju podszywowym, [kN]

A – diagram obciążenia przy badaniu okresowym
B – diagram obciążenia przy badaniu typu
Diagram obciążeń statycznych strefy podszynowej podkładu przy badaniach odbiorczych

Fr₀ – siła początkowa w cyklu obciążeń w przekroju podszynowym, [kN]

Frᵣ – minimalna dopuszczalna siła przy której może pojawić się pierwsza rysa, o minimalnej głębokości 15 mm, w przekroju podszynowym, [kN] – przy badaniu odbiorczym należy przyjmować wartość siły zgodnie z tabelą 1 w punkcie 4.4.5.1.

A – diagram obciążenia obligatoryjnego
B – diagram obciążenia opcjonalnego – na życzenie Odbiorcy
Schemat badania podkładu w przekroju środkowym

Lc – projektowana odległość pomiędzy osiami komór szynowych
1 – sztywne podłoże; 2 – podpora; 3 – sprężysta podkładka (załącznik 11); 4 – podkład

Rysunek 1 - pozycja normalna

Lc – projektowana odległość pomiędzy osiami komór szynowych
1 – sztywne podłoże; 2 – podpora; 3 – sprężysta podkładka (załącznik 11); 4 – podkład; 5 – standardowa przekładka podszywna; 6 – stalowa podkładka klinowa (załącznik 11)

Rysunek 2 - pozycja odwrócona
Diagram obciążeń statycznych strefy środkowej podkładu

Rysunek 3

\(F_{c_0} \) – siła początkowa w cyklu obciążeń podkładu w pozycji normalnej w przekroju środkowym, [kN]

\(F_{c_{on}} \) – siła początkowa w cyklu obciążeń podkładu w pozycji odwróconej w przekroju środkowym, [kN]

\(F_{c_i} \) – siła powodująca powstanie pierwszej rysy w cyklu obciążeń podkładu w pozycji normalnej w przekroju środkowym, [kN]

\(F_{c_m} \) – siła powodująca powstanie pierwszej rysy w cyklu obciążeń podkładu w pozycji odwróconej w przekroju środkowym, [kN]

\(F_{c_b} \) – siła powodująca złamanie w środkowej części podkładu w pozycji normalnej, [kN]

\(F_{c_{bn}} \) – siła powodująca złamanie w środkowej części podkładu w pozycji odwróconej, [kN]

\(L_c \) – projektowana odległość pomiędzy osiami komór szynowych, [m]
Schemat badania podrozjazdniicy

1 – sztywne podłoże; 2 – podpora; 3 – sprężysta podkładka (załącznik 11); 4 – podrozjazdnica

Rysunek 1
Diagram obciążeń statycznych podrozjazdnicy

1- sprawdzanie pojawienia się rysy

Rysunek 2

Fb₀ – siła początkowa w cyklu obciążenia podrozjazdnicy w pozycji normalnej, [kN]
Fb₀n – siła początkowa w cyklu obciążenia podrozjazdnicy w pozycji odwróconej, [kN]
Fbᵣ – siła przy której pojawia się pierwsza rysa w dolnej części podrozjazdnicy, [kN]
Fbᵣn - siła przy której pojawia się pierwsza rysa w górnej części podrozjazdnicy, [kN]
Fb₀,₀₅ – siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm po zdjęciu obciążenia na powierzchni dolnej podrozjazdnicy, [kN]
Fb₀,₀₅n - siła powodująca stałe rozwarcie rysy o szerokości 0,05 mm po zdjęciu obciążenia na powierzchni górnej podrozjazdnicy, [kN]
Fbₖ – siła powodująca złamanie podrozjazdnicy przy badaniu w pozycji normalnej, [kN]
Fbₖn – siła powodującą złamanie podrozjazdnicy przy badaniu w pozycji odwróconej, [kN]
A – diagram obciążenia przy badaniach okresowych
B – diagram obciążenia przy badaniach typu lub okresowych na życzenie Nabywcy
Diagram obciążeń statycznych podrozjazdnicy przy badaniach odbiorczych

\[F_{b_0} \text{ (Fb)} \]

\[F_{b_{on}} \text{ (Fb)} \]

2 kN/s

10 s ÷ 300 s

\[F_{b_r} \]

\[F_{b_{rn}} \]

Rysunek 3

\(F_{b_0} \) – siła początkowa w cyklu obciążeń podrozjazdnicy w pozycji normalnej, [kN]

\(F_{b_{on}} \) – siła początkowa w cyklu obciążeń podrozjazdnicy w pozycji odwróconej, [kN]

\(F_{b_r} \) – siła przy której powinna pojawić się pierwsza rysa w dolnej części podrozjazdnicy, [kN] - przy badaniu należy przyjmować wartość siły zgodnie z tabelą 4a w punkcie 4.4.8.

\(F_{b_{rn}} \) – siła przy której powinna pojawić się pierwsza rysa w górnej części podrozjazdnicy, [kN] - przy badaniu należy przyjmować wartość siły zgodnie z tabelą 4b w punkcie 4.4.8.
Diagram obciążeń dynamicznych

1 – 5 000 cykli obciążenia; 2 – czas na sprawdzanie pojawienia się rysy maksymalnie 300 s;
3 – częstotliwość 2 ÷ 5 Hz

Oznaczenia:
Fr₀ – minimalna siła w cyklu obciążeń dynamicznych = 50 kN
Fr₀₀ – maksymalna siła w pierwszym cyklu obciążeń dynamicznych – zgodnie z tabelą 1 w 4.4.5.1, [kN]
Frᵣ – siła, przy obciążeniu dynamicznym, powodująca pojawienie się pierwszej rysy widocznej okiem nieuzbrojonym, [kN]
Fr₀₀₀₅ – siła, przy obciążeniu dynamicznym, powodująca stałe rozwarcie rysy o szerokości 0,05 mm po zdjęciu obciążenia, [kN]
Frᵣ, Fr₀₀₅ – siła, przy obciążeniu dynamicznym, powodująca złamanie lub stałą rozwartość rysy większą od 0,5 mm po zdjęciu obciążenia, [kN]
Diagram obciążeń zmęczeniowych podkładu

1 – obciążenie 2 miliony cykli z częstotliwością 2 ÷ 5 Hz

Rysunek 1

\(F_{r_{u}} \) – minimalna siła w cyklu obciążeń dynamicznych = 50 kN

\(F_{r_{0}} \) – siła początkowa w cyklu obciążeń w przekroju podszywnym, [kN]

\(F_{r_{r}} \) – siła powodująca powstanie pierwszej rysy w przekroju podszywnym, [kN]

\(F_{r_{B}} \) – siła powodująca złamanie podkładu w przekroju podszywnym, [kN]

Uwaga: obciążenie w pierwszym cyklu, dla osiągnięcia obciążenia równego wartości siły \(F_{r_{r}} \), powinno być przeprowadzone zgodnie z diagramem przedstawionym na rysunku 2 załącznik 6
Diagram obciążeń zmęczeniowych podrozjazdnicy

Rysunek 2

F_{b_0} - minimalna siła w cyklu obciążeń dynamicznych = 21 kN

F_{b_0} - maksymalna siła w pierwszym cyklu obciążeń dynamicznych, [kN]

F_b – siła, przy obciążeniu dynamicznym, powodująca pojawienie się pierwszej rysy widocznej okiem nieuzbrojonym, [kN]

F_{b_B} – siła, przy obciążeniu dynamicznym, powodująca złamanie lub stałą rozwartość rysy większą od 0,5 mm bez obciążenia, [kN]

Uwaga: obciążenie w pierwszym cyklu, dla osiągnięcia obciążenia równego wartości siły F_{b_B}, powinno być przeprowadzone zgodnie z diagramem przedstawionym na rysunku 2 załącznik 8
Załącznik 11

Podkładki stosowane przy badaniu rysoodporności

Sprężysta podkładka

1 – minimalna długość powinna być równa szerokości podkładu (w komorze szynowej) lub podrozjazdnicy zwiększona o 20 mm; materiał przekładki: elastomer; sztywność statyczna $30 \div 90$ kN/mm

Stalowa podkładka klinowa

1 – minimalna szerokość powinna być równa szerokości standardowej przekładki; materiał przekładki: stal o minimalnej twardości 240 HB; tolerancja wykonania: $\pm 0,1$ mm
Protokół badania odbiorczego (przykład)

PROTOKÓŁ Z BADANIA ODBIORCZEGO PODKŁADÓW TYPU.............

nr z dnia200.... roku

Partia odbiorowa nr :............./............. wyprodukowana w......................roku

Liczność partii: sztuk

Producent (nazwa, adres - pieczęć):

Wyniki badania niepełnego

<table>
<thead>
<tr>
<th>SPRAWDZENIE MATERIAŁOWych</th>
<th>ATESTÓW</th>
<th>atest</th>
<th>zgodność z WTWiO</th>
</tr>
</thead>
<tbody>
<tr>
<td>cement</td>
<td>jest</td>
<td>brak</td>
<td>jest</td>
</tr>
<tr>
<td>piasek</td>
<td>jest</td>
<td>brak</td>
<td>jest</td>
</tr>
<tr>
<td>kruszywo</td>
<td>jest</td>
<td>brak</td>
<td>jest</td>
</tr>
<tr>
<td>stal zbrojeniowa</td>
<td>jest</td>
<td>brak</td>
<td>jest</td>
</tr>
</tbody>
</table>

Stan powierzchni i wygląd wewnątrzny

<table>
<thead>
<tr>
<th>podkład nr</th>
<th>1</th>
<th>2</th>
<th>......</th>
<th>10</th>
<th>......</th>
<th>15</th>
<th>......</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>zgodność z WTWiO pkt. 4.4.2</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
</tr>
<tr>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
</tr>
</tbody>
</table>

ogólna ocena wg 5.2 | pozytywna / negatywna

Sprawdzenie wymiarów podstawowych
Warunki Techniczne Wykonania i Odbioru

Podkładow i Podrozjaźdnic Strunobetonowych

WTWIO – ILK3a-5187/01/05

Wymiar Sprawdzany

<table>
<thead>
<tr>
<th>nr podkładu</th>
<th>L</th>
<th>b₁(*)</th>
<th>c₁</th>
<th>h</th>
<th>hₚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>± 10</td>
<td>+5 -3</td>
<td>+5 -3</td>
<td>+5 -3</td>
<td>+5 -3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ogółna ocena wg 5.2</td>
<td>pozytywna / negatywna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) średnia z pomiarów w obu częściach podszywnych podkładu

Sprawdzenie Rozstawu Kotew

<table>
<thead>
<tr>
<th>nr badanego podkładu</th>
<th>L₁</th>
<th>L₃</th>
<th>nr badanego podkładu</th>
<th>L₁</th>
<th>L₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+2 -1</td>
<td>+2,5 +0,5</td>
<td>+2,5 +0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ogółna ocena wg 5.2</td>
<td>pozytywna / negatywna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CZĘŚCI PODSZYNOWEJ
nr podkładu | Fr, [kN] | ocena
---|---|---
1 | |
2 | |
3 | |

W oparciu o powyższe wyniki stwierdza się że partia odbiorowa podkładów strunobetonowych typu: ...

spełnia / nie spełnia wymagania. Partię podkładów odebrano / nie odebrano.

Uwagi:
..
..
..

Miejsce i data wystawienia

Podpis i pieczęć osoby upoważnionej
PROTOKÓŁ Z BADANIA ODBIORCZEGO PODROZJAZDNICZNYCH

nr z dnia20... roku

Partia odbiorowa nr/............... wyprodukowana w.................................roku

Liczność doboru: sztuk

Producent (nazwa, adres - pieczęć):

Wyniki badania niepełnego

<table>
<thead>
<tr>
<th>Sprawdzenie materiałowe</th>
<th>Atest st</th>
<th>Zgodność z WTWIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>cement</td>
<td>jest</td>
<td>brak</td>
</tr>
<tr>
<td>piasek</td>
<td>jest</td>
<td>brak</td>
</tr>
<tr>
<td>kruszywo</td>
<td>jest</td>
<td>brak</td>
</tr>
<tr>
<td>stal zbrojeniowa</td>
<td>jest</td>
<td>brak</td>
</tr>
</tbody>
</table>

Stan powierzchni i wygląd zewnętrzny

<table>
<thead>
<tr>
<th>podrozjazdnica nr</th>
<th>101</th>
<th>103</th>
<th>106</th>
<th>.......</th>
<th>352</th>
<th>.......</th>
<th>359</th>
<th>361</th>
</tr>
</thead>
<tbody>
<tr>
<td>zgodność z WTWIO pkt. 4.4.2</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
</tr>
<tr>
<td>ogólna ocena wg 5.2</td>
<td>pozytywna / negatywna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPRAWDZENIE WYMIARÓW

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) pomiar dwukrotny: początek podkładu / koniec podkładu

SPRAWDZENIE ROZSTAWU DYBLI

![Diagram of dybls]

CECHOWANIE

<table>
<thead>
<tr>
<th>podrozjazdnica nr</th>
<th>101</th>
<th>103</th>
<th>106</th>
<th>......</th>
<th>352</th>
<th>......</th>
<th>359</th>
<th>361</th>
</tr>
</thead>
<tbody>
<tr>
<td>zgodność z WTWiO pkt. 4.4.2</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
<td>jest</td>
</tr>
<tr>
<td>ogólna ocena wg 5.2</td>
<td>pozytywna / negatywna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sprawdzenie Prostoliniowości

<table>
<thead>
<tr>
<th>podrozjazdnica nr</th>
<th>ugięcie [mm]</th>
<th>ocena</th>
<th>pozytywna</th>
<th>negatywna</th>
</tr>
</thead>
<tbody>
<tr>
<td>........</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sprawdzenie Wytrzymałości na Zarysowanie

<table>
<thead>
<tr>
<th>podrozjazdnica nr</th>
<th>Fb, [kN]</th>
<th>ocena</th>
<th>pozytywna</th>
<th>negatywna</th>
</tr>
</thead>
<tbody>
<tr>
<td>........</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>podrozjazdnica nr</td>
<td>Fb,m [kN]</td>
<td>ocena</td>
<td>pozytywna</td>
<td>negatywna</td>
</tr>
<tr>
<td>........</td>
<td>80 (dla PS-93)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td>90 (dla PS-06a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td>80 (dla PS-93)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>........</td>
<td>90 (dla PS-06a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W oparciu o powyższe wyniki stwierdza się że dobór odbiorowy podrozjazdnic spełnia / nie spełnia wymagania. Partię podrozjazdnic odebrano / nie odebrano.

Uwagi:

...
...

Miejsce i data wystawienia

Podpis i pieczęć osoby upoważnionej
DECLARACIÓN ZGODNOŚCI nr.

Dostawca (pełna nazwa i adres)..

Wyrób:

Nazwa wyrobu ..

Klasyfikacja wyrobu (symbol SWW, kod PKWiU)..

Przeznaczenie i zakres stosowania:..

Identyfikacja partii wyrobu objętej deklaracją ..

5.3.12.3 Opisany powyżej wyrób jest zgodny z następującymi dokumentami odniesienia

<table>
<thead>
<tr>
<th>nr dokumentu</th>
<th>tytuł dokumentu i nazwa jednostki wydającej</th>
<th>data wydania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dodatkowe informacje

..

Deklaruję z pełną odpowiedzialnością, że wyroby partii określonej w deklaracji są zgodne z dokumentami odniesienia

..

..

(miejsce i data wystawienia) (imiona i nazwiska, podpisy oraz pieczęcie osób upoważnionych do wystawienia deklaracji)